实体对齐汇总

文章目录

  • 1.综述
  • 2.技术论文
  • 3.汇总
    • 3.1定义
      • 定义统一
      • EA
    • 3.2 评价指标
    • 3.3 数据集
    • 3.4 数据预处理技术
    • 3.5 索引
    • 3.6 对齐
      • 3.6.1 按属性相似度/文本相似度做:成对实体对齐
      • 3.6.2 协同对齐:考虑不同实体间的关联
        • 3.6.2.1 局部实体对齐
        • 3.6.2.2 全局实体对齐
      • 3.6.3 基于embedding的方法分类
  • 4.开源代码
  • 5.效果比较
  • 6.使用场景
  • 7. 实验效果
    • 7.1 DBP15k
    • 7.2EN-FR
    • 7.3 SRPRS
    • 7.4 DWY100k
  • 参考文献

1.综述

  • embedding 方法
  1. OpenEA: “A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs”.
    Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz Akrami, Chengkai Li. PVLDB, vol. 13. ACM 2020 [paper][code][笔记]
  2. "An Experimental Study of State-of-the-Art Entity Alignment Approaches".
    Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang, Fabian Suchanek. TKDE, 2020 [paper][笔记]

2.技术论文

实体对齐论文列表

  1. JE: “A Joint Embedding Method for Entity Alignment of Knowledge Bases”.
    Yanchao Hao, Yuanzhe Zhang, Shizhu He, Kang Liu, Jun Zhao. (CCKS 2016) [paper][code]

  2. MTransE: “Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment”.
    Muhao Chen, Yingtao Tian, Mohan Yang, Carlo Zaniolo. (IJCAI 2017) [paper][code]

  3. JAPE: “Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding”.
    Zequn Sun, Wei Hu, Chengkai Li. (ISWC 2017) [paper][code]

  4. IPTransE: “Iterative Entity Alignment via Joint Knowledge Embeddings”.
    Hao Zhu, Ruobing Xie, Zhiyuan Liu, Maosong Sun. (IJCAI 2017) [paper][code]

  5. BootEA: “Bootstrapping Entity Alignment with Knowledge Graph Embedding”.
    Zequn Sun, Wei Hu, Qingheng Zhang, Yuzhong Qu. (IJCAI 2018) [paper][code][笔记]

  6. KDCoE: “Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment”.
    Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, Carlo Zaniolo. (IJCAI 2018) [paper][code]

  7. NTAM: “Non-translational Alignment for Multi-relational Networks”.
    Shengnan Li, Xin Li, Rui Ye, Mingzhong Wang, Haiping Su, Yingzi Ou. (IJCAI 2018) [paper][code]

  8. **“LinkNBed: Multi-Graph Representation Learning with Entity Linkage”.""
    Rakshit Trivedi, Bunyamin Sisman, Jun Ma, Christos Faloutsos, Hongyuan Zha, Xin Luna Dong (ACL 2018) [paper]

  9. GCN-Align: “Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks”.
    Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang. (EMNLP 2018) [paper][code]

  10. AttrE: “Entity Alignment between Knowledge Graphs Using Attribute Embeddings”.
    Bayu D. Trsedya, Jianzhong Qi, Rui Zhang. (AAAI 2019) [paper][code]

  11. SEA: “Semi-Supervised Entity Alignment via Knowledge Graph Embedding with Awareness of Degree Difference”.
    Shichao Pei, Lu Yu, Robert Hoehndorf, Xiangliang Zhang. (WWW 2019) [paper][code]

  12. RSN4EA: “Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs”.
    Lingbing Guo, Zequn Sun, Wei Hu. (ICML 2019) [paper][code]

  13. MuGNN: “Multi-Channel Graph Neural Network for Entity Alignment”.
    Yixin Cao, Zhiyuan Liu, Chengjiang Li, Zhiyuan Liu, Juanzi Li, Tat-Seng Chua. (ACL 2019) [paper][code]

  14. GMNN: “Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network”.
    Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, Dong Yu. (ACL 2019) [paper][code]

  15. MultiKE: “Multi-view Knowledge Graph Embedding for Entity Alignment”.
    Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, Yuzhong Qu. (IJCAI 2019) [paper][code]

  16. RDGCN: “Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui Yan, Dongyan Zhao. (IJCAI 2019) [paper][code]

  17. OTEA: “Improving Cross-lingual Entity Alignment via Optimal Transport”.
    Shichao Pei, Lu Yu, Xiangliang Zhang. (IJCAI 2019) [paper][code]

  18. NAEA: “Neighborhood-Aware Attentional Representation for Multilingual Knowledge Graphs”.
    Qiannan Zhu, Xiaofei Zhou, Jia Wu, Jianlong Tan, Li Guo. (IJCAI 2019) [paper][code]

  19. AVR-GCN: “A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment”.
    Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, Mingzhong Wang. (IJCAI 2019) [paper][code]

  20. TransEdge: “TransEdge: Translating Relation-Contextualized Embeddings for Knowledge Graphs”.
    Zequn Sun, Jiacheng Huang, Wei Hu, Muhao Chen, Lingbing Guo, Yuzhong Qu. (ISWC 2019) [paper][code]

  21. KECG: “Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model”.
    Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, Tat-Seng Chua. (EMNLP 2019) [paper][code]

  22. HGCN: “Jointly Learning Entity and Relation Representations for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (EMNLP 2019) [paper][code]

  23. MMEA: “Modeling Multi-mapping relations for Precise Cross-lingual Entity Alignment”.
    Xiaofei Shi, Yanghua Xiao. (EMNLP 2019) [paper][code]

  24. HMAN: “Aligning Cross-lingual Entities with Multi-Aspect Information”.
    Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu, Jimmy Lin, Xu Sun. (EMNLP 2019) [paper][code]

  25. AKE: “Guiding Cross-lingual Entity Alignment via Adversarial Knowledge Embedding”.
    Xixun Lin, Hong Yang, Jia Wu, Chuan Zhou, Bin Wang. (ICDM 2019) [paper][code]

  26. MRAEA: “MRAEA: An Efficient and Robust Cross-lingual Entity Alignment Approach via Meta Relation Aware Representation”.
    Xin Mao, Wenting Wang, Huimin Xu, Man Lan, Yuanbin Wu. (WSDM 2020) [paper][code]

  27. AliNet: “Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation”.
    Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, Yuzhong Qu. (AAAI 2020) [paper][code]

  28. "Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment".
    Kun Xu, Linfeng Song, Yansong Feng, Yan Song, Dong Yu. (AAAI 2020) [paper][code]

  29. COTSAE: “COTSAE: CO-Training of Structure and Attribute Embeddings for Entity Alignment”.
    Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, Bing Xie. (AAAI 2020) [paper][code]

  30. CEAFF: “Collective Embedding-based Entity Alignment via Adaptive Features”.
    Weixin Zeng, Xiang Zhao, Jiuyang Tang, Xuemin Lin. (ICDE 2020) [paper][code]

  31. "Deep Graph Matching Consensus".
    Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, Nils M. Kriege. (ICLR 2020) [paper][code]

  32. CG-MuAlign: “Collective Multi-type Entity Alignment Between Knowledge Graphs”.
    Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, Jiawei Han. (WWW 2020) [paper][code]

  33. JarKA: “JarKA: Modeling Attribute Interactions for Cross-lingual Knowledge Alignment”.
    Bo Chen, Jing Zhang, Xiaobin Tang, Hong Chen, Cuiping Li. (PAKDD 2020) [paper][code]

  34. NMN: “Neighborhood Matching Network for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (ACL 2020) [paper][code]

  35. BERT-INT: “BERT-INT: A BERT-based Interaction Model For Knowledge Graph Alignment”.
    Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, Cuiping Li. (IJCAI 2020) [paper][code]

  36. SSP: “Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment”.
    Hao Nie, Xianpei Han, Le Sun, Chi Man Wong, Qiang Chen, Suhui Wu, Wei Zhang. (IJCAI 2020) [paper][code]

  37. DAT: “Degree-Aware Alignment for Entities in Tail”.
    Weixin Zeng, Xiang Zhao, Wei Wang, Jiuyang Tang, Zhen Tan. (SIGIR 2020) [paper][code]

  38. RREA: “Relational Reflection Entity Alignment”.
    Xin Mao, Wenting Wang, Huimin Xu, Yuanbin Wu, Man Lan. (CIKM 2020) [paper][code]

  39. REA: “REA: Robust Cross-lingual Entity Alignment Between Knowledge Graphs”.
    Shichao Pei, Lu Yu, Guoxian Yu, Xiangliang Zhang. (KDD 2020) [paper][code]

  40. HyperKA: “Knowledge Association with Hyperbolic Knowledge Graph Embeddings”.
    Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang, Jian Dai, Wei Zhang. (EMNLP 2020) [paper][code]

  41. AttrGNN: “Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment”.
    Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, Zhiyuan Liu, Tat-Seng Chua. (EMNLP 2020) [paper][code]

  42. EPEA: “Knowledge Graph Alignment with Entity-Pair Embedding”.
    Zhichun Wang, Jinjian Yang, Xiaoju Ye. (EMNLP 2020) [paper]

  43. "Learning Short-Term Differences and Long-Term Dependencies for Entity Alignment".
    Jia Chen, Zhixu Li, Pengpeng Zhao, An Liu, Lei Zhao, Zhigang Chen, Xiangliang Zhang. (ISWC 2020) [paper]

  44. "Visual Pivoting for (Unsupervised) Entity Alignment".
    Fangyu Liu, Muhao Chen, Dan Roth, Nigel Collier. (AAAI 2021) [paper][code]

  45. DINGAL: “Dynamic Knowledge Graph Alignment”.
    Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, Hanghang Tong. (AAAI 2021) [paper]

  46. RNM: “Relation-Aware Neighborhood Matching Model for Entity Alignment”.
    Yao Zhu, Hongzhi Liu, Zhonghai Wu, Yingpeng Du. (AAAI 2021) [paper]

  47. "Cross-lingual Entity Alignment with Incidental Supervision".
    Muhao Chen, Weijia Shi, Ben Zhou, Dan Roth. (EACL 2021) [paper][code]

  48. "Active Learning for Entity Alignment".
    Max Berrendorf, Evgeniy Faerman, Volker Tresp. (ECIR 2021) [paper]

  49. Dual-AMN: “Boosting the Speed of Entity Alignment 10×: Dual Attention Matching Network with Normalized Hard Sample Mining”.
    Xin Mao, Wenting Wang, Yuanbin Wu, Man Lan. (WWW 2021) [paper][code]1. JE: “A Joint Embedding Method for Entity Alignment of Knowledge Bases”.
    Yanchao Hao, Yuanzhe Zhang, Shizhu He, Kang Liu, Jun Zhao. (CCKS 2016) [paper][code]

  50. MTransE: “Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment”.
    Muhao Chen, Yingtao Tian, Mohan Yang, Carlo Zaniolo. (IJCAI 2017) [paper][code]

  51. JAPE: “Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding”.
    Zequn Sun, Wei Hu, Chengkai Li. (ISWC 2017) [paper][code]

  52. IPTransE: “Iterative Entity Alignment via Joint Knowledge Embeddings”.
    Hao Zhu, Ruobing Xie, Zhiyuan Liu, Maosong Sun. (IJCAI 2017) [paper][code]

  53. BootEA: “Bootstrapping Entity Alignment with Knowledge Graph Embedding”.
    Zequn Sun, Wei Hu, Qingheng Zhang, Yuzhong Qu. (IJCAI 2018) [paper][code]

  54. KDCoE: “Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment”.
    Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, Carlo Zaniolo. (IJCAI 2018) [paper][code]

  55. NTAM: “Non-translational Alignment for Multi-relational Networks”.
    Shengnan Li, Xin Li, Rui Ye, Mingzhong Wang, Haiping Su, Yingzi Ou. (IJCAI 2018) [paper][code]

  56. **“LinkNBed: Multi-Graph Representation Learning with Entity Linkage”.""
    Rakshit Trivedi, Bunyamin Sisman, Jun Ma, Christos Faloutsos, Hongyuan Zha, Xin Luna Dong (ACL 2018) [paper]

  57. GCN-Align: “Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks”.
    Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang. (EMNLP 2018) [paper][code]

  58. AttrE: “Entity Alignment between Knowledge Graphs Using Attribute Embeddings”.
    Bayu D. Trsedya, Jianzhong Qi, Rui Zhang. (AAAI 2019) [paper][code]

  59. SEA: “Semi-Supervised Entity Alignment via Knowledge Graph Embedding with Awareness of Degree Difference”.
    Shichao Pei, Lu Yu, Robert Hoehndorf, Xiangliang Zhang. (WWW 2019) [paper][code]

  60. RSN4EA: “Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs”.
    Lingbing Guo, Zequn Sun, Wei Hu. (ICML 2019) [paper][code]

  61. MuGNN: “Multi-Channel Graph Neural Network for Entity Alignment”.
    Yixin Cao, Zhiyuan Liu, Chengjiang Li, Zhiyuan Liu, Juanzi Li, Tat-Seng Chua. (ACL 2019) [paper][code]

  62. GMNN: “Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network”.
    Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, Dong Yu. (ACL 2019) [paper][code]

  63. MultiKE: “Multi-view Knowledge Graph Embedding for Entity Alignment”.
    Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, Yuzhong Qu. (IJCAI 2019) [paper][code]

  64. RDGCN: “Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui Yan, Dongyan Zhao. (IJCAI 2019) [paper][code]

  65. OTEA: “Improving Cross-lingual Entity Alignment via Optimal Transport”.
    Shichao Pei, Lu Yu, Xiangliang Zhang. (IJCAI 2019) [paper][code]

  66. NAEA: “Neighborhood-Aware Attentional Representation for Multilingual Knowledge Graphs”.
    Qiannan Zhu, Xiaofei Zhou, Jia Wu, Jianlong Tan, Li Guo. (IJCAI 2019) [paper][code]

  67. AVR-GCN: “A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment”.
    Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, Mingzhong Wang. (IJCAI 2019) [paper][code]

  68. TransEdge: “TransEdge: Translating Relation-Contextualized Embeddings for Knowledge Graphs”.
    Zequn Sun, Jiacheng Huang, Wei Hu, Muhao Chen, Lingbing Guo, Yuzhong Qu. (ISWC 2019) [paper][code]

  69. KECG: “Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model”.
    Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, Tat-Seng Chua. (EMNLP 2019) [paper][code]

  70. HGCN: “Jointly Learning Entity and Relation Representations for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (EMNLP 2019) [paper][code]

  71. MMEA: “Modeling Multi-mapping relations for Precise Cross-lingual Entity Alignment”.
    Xiaofei Shi, Yanghua Xiao. (EMNLP 2019) [paper][code]

  72. HMAN: “Aligning Cross-lingual Entities with Multi-Aspect Information”.
    Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu, Jimmy Lin, Xu Sun. (EMNLP 2019) [paper][code]

  73. AKE: “Guiding Cross-lingual Entity Alignment via Adversarial Knowledge Embedding”.
    Xixun Lin, Hong Yang, Jia Wu, Chuan Zhou, Bin Wang. (ICDM 2019) [paper][code]

  74. MRAEA: “MRAEA: An Efficient and Robust Cross-lingual Entity Alignment Approach via Meta Relation Aware Representation”.
    Xin Mao, Wenting Wang, Huimin Xu, Man Lan, Yuanbin Wu. (WSDM 2020) [paper][code]

  75. AliNet: “Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation”.
    Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, Yuzhong Qu. (AAAI 2020) [paper][code]

  76. "Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment".
    Kun Xu, Linfeng Song, Yansong Feng, Yan Song, Dong Yu. (AAAI 2020) [paper][code]

  77. COTSAE: “COTSAE: CO-Training of Structure and Attribute Embeddings for Entity Alignment”.
    Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, Bing Xie. (AAAI 2020) [paper][code]

  78. CEAFF: “Collective Embedding-based Entity Alignment via Adaptive Features”.
    Weixin Zeng, Xiang Zhao, Jiuyang Tang, Xuemin Lin. (ICDE 2020) [paper][code]

  79. "Deep Graph Matching Consensus".
    Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, Nils M. Kriege. (ICLR 2020) [paper][code]

  80. CG-MuAlign: “Collective Multi-type Entity Alignment Between Knowledge Graphs”.
    Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, Jiawei Han. (WWW 2020) [paper][code]

  81. JarKA: “JarKA: Modeling Attribute Interactions for Cross-lingual Knowledge Alignment”.
    Bo Chen, Jing Zhang, Xiaobin Tang, Hong Chen, Cuiping Li. (PAKDD 2020) [paper][code]

  82. NMN: “Neighborhood Matching Network for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (ACL 2020) [paper][code]

  83. BERT-INT: “BERT-INT: A BERT-based Interaction Model For Knowledge Graph Alignment”.
    Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, Cuiping Li. (IJCAI 2020) [paper][code]

  84. SSP: “Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment”.
    Hao Nie, Xianpei Han, Le Sun, Chi Man Wong, Qiang Chen, Suhui Wu, Wei Zhang. (IJCAI 2020) [paper][code]

  85. DAT: “Degree-Aware Alignment for Entities in Tail”.
    Weixin Zeng, Xiang Zhao, Wei Wang, Jiuyang Tang, Zhen Tan. (SIGIR 2020) [paper][code]

  86. RREA: “Relational Reflection Entity Alignment”.
    Xin Mao, Wenting Wang, Huimin Xu, Yuanbin Wu, Man Lan. (CIKM 2020) [paper][code]

  87. REA: “REA: Robust Cross-lingual Entity Alignment Between Knowledge Graphs”.
    Shichao Pei, Lu Yu, Guoxian Yu, Xiangliang Zhang. (KDD 2020) [paper][code]

  88. HyperKA: “Knowledge Association with Hyperbolic Knowledge Graph Embeddings”.
    Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang, Jian Dai, Wei Zhang. (EMNLP 2020) [paper][code]

  89. AttrGNN: “Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment”.
    Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, Zhiyuan Liu, Tat-Seng Chua. (EMNLP 2020) [paper][code]

  90. EPEA: “Knowledge Graph Alignment with Entity-Pair Embedding”.
    Zhichun Wang, Jinjian Yang, Xiaoju Ye. (EMNLP 2020) [paper]

  91. "Learning Short-Term Differences and Long-Term Dependencies for Entity Alignment".
    Jia Chen, Zhixu Li, Pengpeng Zhao, An Liu, Lei Zhao, Zhigang Chen, Xiangliang Zhang. (ISWC 2020) [paper]

  92. "Visual Pivoting for (Unsupervised) Entity Alignment".
    Fangyu Liu, Muhao Chen, Dan Roth, Nigel Collier. (AAAI 2021) [paper][code]

  93. DINGAL: “Dynamic Knowledge Graph Alignment”.
    Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, Hanghang Tong. (AAAI 2021) [paper]

  94. RNM: “Relation-Aware Neighborhood Matching Model for Entity Alignment”.
    Yao Zhu, Hongzhi Liu, Zhonghai Wu, Yingpeng Du. (AAAI 2021) [paper]

  95. "Cross-lingual Entity Alignment with Incidental Supervision".
    Muhao Chen, Weijia Shi, Ben Zhou, Dan Roth. (EACL 2021) [paper][code]

  96. "Active Learning for Entity Alignment".
    Max Berrendorf, Evgeniy Faerman, Volker Tresp. (ECIR 2021) [paper]

  97. Dual-AMN: “Boosting the Speed of Entity Alignment 10×: Dual Attention Matching Network with Normalized Hard Sample Mining”.
    Xin Mao, Wenting Wang, Yuanbin Wu, Man Lan. (WWW 2021) [paper][code]

3.汇总

3.1定义

  • 匹配两个KG或一个KG内指向同一物理对象,合并向同时提

定义统一

  • Entity Linking=entity disambiguation
  • Entity resolution=entity matching=deduplication=record linkage

EA

EA

  • 分类:

    • Scope:
      • entity alignment<-本文只考虑这个
      • relation
      • 类别对齐:class of taxonomies of two KGs
      • 方法:有一次性执行三种任务的joint model
    • Background knowledge
      • OAEI:使用ontology(T-box)作为背景信息
      • 另一种:不使用ontology的方法
    • Training
      • 无监督:PARIS,SIGMa,AML
      • 有监督:基于pre-defined mappings的
      • 半监督:bootstrapping(self-training,co-training)
  • EA with deep leaning:

    • 基于graph representation learning technologies
      • 建模KG结构
      • 生成实体嵌入
  • 比较

    • 无监督
      • PARIS
      • Agreement-MakerLight(AML):使用背景信息(本体)
    • ER方法:基于名称的启发式方法
      • goal相同:EA=ER–因为相同所以比较ER方法
  • Bechmarks:

    • 语言内+DBPedia
      • DBP15K
      • DWY15
      • 问题:现有的Bechmarks,只包含schema和instance信息。对不假设有可用的本体的EA方法来说。–所以本文不介绍本体?
  • PS:

    • OAEI:推广了KG track
    • 不公平

3.2 评价指标

  • 对齐质量:准确性和全面性
    • MR
    • MRR
    • Hits@m:m=1为precision
    • precision/recall/f1
      • 传统方法再用
  • 对齐效率:分区索引技术对候选匹配对的筛选能力和准确性
    • 缩减率
    • 候选对完整性
    • 候选对质量

3.3 数据集

  • Embedding数据集

    • FBK15
    • FBK15-237
    • WN18
    • WN18RR
  • 传统实体对齐数据集:

    • OAEI(since 2004)
  • embedding实体对齐数据集

    • DBP15K:

      • 跨语言:
        • zh-en,
          • zh:关系三元组数:70414,关系数1701,属性三元组数:248035
          • en: 关系三元组数:95142,关系数1323,属性三元组数:343218
        • ja-en,
          • ja:关系三元组数:77214,关系数1299,属性三元组数:248991
          • en: 关系三元组数:93484,关系数1153,属性三元组数:320616
        • fr-en
          • fr:关系三元组数:105998,关系数903,属性三元组数:273825
          • en: 关系三元组数:115722,关系数1208,属性三元组数:351094
      • 实体对齐连接数:15k(每对语言间)
      • 度的分布:大多在1,从2-10,度越大,实体数量下降
      • DBPedia
    • WK3L

    • DWY100K:

      • 每个KG实体数:100k
      • 单语言:
        • DBP-WD,
          • DBP:关系三元组数:463294,关系数330,属性三元组数:341770
          • WD:关系三元组数:448774,关系数220,属性三元组数:779402
        • DBP-YG
          • DBP:关系三元组数:428952,关系数302,属性三元组数:383757
          • YG:关系三元组数:502563,关系数31,属性三元组数:98028
        • (DBP:DBPedia,YG:Yago3,WD:wikidata)
      • 每对有100k个实体对齐连接
      • 度的分布:没有度为1or2的,峰值在4,之后递减
    • SRPRS

      • 认为以前的数据集太稠密了(DBP,DWY),度的分布偏离现实
      • 跨语言:
        • EN-FR,
          • EN:关系三元组数:36508,关系数221,属性三元组数:60800
          • FR:关系三元组数:33532,关系数177,属性三元组数:53045
        • EN-DE
          • EN:关系三元组数:38363,关系数220,属性三元组数:55580
          • DE:关系三元组数:37377,关系数120,属性三元组数:73753
      • 单语言:
        • DBP-WD,
          • DBP:关系三元组数:33421,关系数253,属性三元组数:64021
          • WD:关系三元组数:40159,关系数144,属性三元组数:133371
        • DBP-YG
          • DBP:关系三元组数:33748,关系数223,属性三元组数:58853
          • YG:关系三元组数:36569,关系数30,属性三元组数:18241
      • 每种有15k个实体对齐连接
      • 度的分布:很现实
        • 度小的实体多(精心取样)
    • EN-FR

    • DBP-FB(An Experimental Study of State-of-the-Art Entity Alignment Approaches)

      • DBP: 关系三元组数:96414,关系数407,属性三元组数:127614
      • FB:关系三元组数:111974,关系数882,属性三元组数:78740
  • 度的分布

    在这里插入图片描述
    在这里插入图片描述

  • EN-FR的统计
    在这里插入图片描述

3.4 数据预处理技术

3.5 索引

  • 分区索引:过滤掉不可能匹配的实体对,降低计算复杂度,避免数据库规模二次增长

3.6 对齐

3.6.1 按属性相似度/文本相似度做:成对实体对齐

  • 传统概率模型:
    • 基于属性相似度评分–>三分类:匹配,可能匹配,不匹配
    • 也可用01
  • 机器学习的模型
    • 根据实体属性构建向量
    • 方法:决策树、SVM等分类模型
    • 优点:自动拟合属性间的组合关系和对应程度,减少人为介入
    • 可引入无监督、半监督
  • 文本匹配/语义匹配
    • 文本特征明显的实体匹配
    • 实体简介很长的那种
    • Bert什么的

3.6.2 协同对齐:考虑不同实体间的关联

在属性相似度基础上考虑了结构相似度

3.6.2.1 局部实体对齐

  • 计算相似度
    • 考虑邻居的属性(带匹配实体对的邻居属性集合)
    • 但不把邻居节点当做平等的实体去计算结构相似性
    • 计算
      • sim(ei,ej)=α⋅simattr(ei,ej)+(1−α)⋅simNB(ei,ej)实体本身的相似度:simattr(ei,ej)=Σ(a1,a2)∈Attr(ei,ej)sim(a1,a2)实体关联实体相似度simNB(ei,ej)=Σ(ei′,ej′)∈NB(ei,ej)simattr(ei′,ej′)sim(e_i,e_j)=\alpha \cdot sim_{attr}(e_i,e_j)+(1-\alpha)\cdot sim_{NB}(e_i,e_j)\\ 实体本身的相似度:sim_{attr}(e_i,e_j)=\Sigma_{(a_1,a_2)\in Attr(e_i,e_j)}sim(a_1,a_2)\\ 实体关联实体相似度sim_{NB}(e_i,e_j)=\Sigma_{(e_i',e_j')\in NB(e_i,e_j) sim_{attr}(e_i',e_j')}sim(ei,ej)=αsimattr(ei,ej)+(1α)simNB(ei,ej)simattr(ei,ej)=Σ(a1,a2)Attr(ei,ej)sim(a1,a2)simNB(ei,ej)=Σ(ei,ej)NB(ei,ej)simattr(ei,ej)

3.6.2.2 全局实体对齐

  • 通过不同匹配策略之间相互影响调整实体之间的相似度
  • 基于相似度传播的方法
    • 基本思想:通过seed alignment以bootstrapping的方式迭代的产生一些新的匹配
    • 半监督?
  • 基于概率模型的方法
    • 基本思想:全局概率最大化。通过为实体匹配关系和匹配决策决策复杂的概率模型,来避免bootstrapping–需要人工参与
    • 基本方法:贝叶斯网络/LDA/CRF/Markov

3.6.3 基于embedding的方法分类

A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs
<-分类来源

  • Embedding Module

    • 关系嵌入
      • triple embedding:transE
      • Path:路径上的长期依赖
      • Neighbor:GCN
    • 属性嵌入
      • 属性
      • literal
  • Interaction Mode

    • Combination mode
      • transformation:学习映射M
      • embedding space Calibration:嵌入到同一空间
      • parameter sharing:同一向量表示
      • parameter swapping:(e1,e2)∈S′,则(e1,r1,e1′)−>(e2,r1,e1′)(e_1,e_2)\in S',则(e_1,r_1,e_1')->(e_2,r_1,e_1')(e1,e2)S,(e1,r1,e1)>(e2,r1,e1)
    • learning
      • 监督
      • 半监督
      • 无监督
  • Embedding

    • transE
    • GCN
  • Alignment

    • 2个向量映射到一个空间
    • 训练一个相同的向量
    • Transition
    • Corpus-fusion
    • Margin-based
    • Graph matching
    • Attribution refined
  • Prediction:

    • 相似度计算:
      • cosine
      • euclidean
      • Manhattan distance
  • Extra information Module

    • 用以增强EA
    • 方法
      • bootstrapping(or self-learning:
        • 利用置信度高的对齐结果加入训练数据(下个iteration)
      • multi-type literal information
        • 属性
        • 实体描述
        • 实体名
        • 完善KG的结构
  • 模块级别的比较

    • 在个模块下介绍各方法如何实现该模块

4.开源代码

  • OpenEA
    • 开源的embedding pipeline组件库

5.效果比较

  • EN-FR
  • DBP15k zh-en/dbp15k fr-en/ja-en效果比较

6.使用场景

  • 单语言/多语言
  • 稀疏/稠密
  • 大规模/中等规模
  • 1v1/多对多
    • 1v1:BootEA

7. 实验效果

7.1 DBP15k

  • DBP15k

在这里插入图片描述

  • DBP15k
    • 组1:仅用结构
      组2:用bootstrapping
      组3:+其他信息
      在这里插入图片描述

7.2EN-FR

  • EN-FR: A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphsh
    在这里插入图片描述

7.3 SRPRS

  • SRPRS
    • 组1:仅用结构
      组2:用bootstrapping
      组3:+其他信息
      在这里插入图片描述

7.4 DWY100k

参考文献

部分参考未列出

  1. A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphsh

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481456.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

博后出站即任985教授!他致力于寻找人类五感世界的最后一块拼图

来源&#xff1a;iNature两年前&#xff0c;闫致强从底蕴深厚的复旦大学生命科学学院“跳”到尚处于新生期的深圳湾实验室&#xff0c;“蜗居”在一栋商业大楼里&#xff0c;和团队在这里寻找人类感知世界的最后一块拼图。在亚里士多德定义的五种感官中&#xff0c;介导嗅觉、味…

【实体对齐·BootEA】Bootstrapping Entity Alignment with Knowledge Graph Embedding

文章目录0.总结1.动机2. 贡献方法3.应用场景4.其他模型5.数据集6.效果以下的是组内比较BootEA: “Bootstrapping Entity Alignment with Knowledge Graph Embedding”.Zequn Sun, Wei Hu, Qingheng Zhang, Yuzhong Qu. (IJCAI 2018) [ paper][ code]0.总结 BootEA笔记 BootE…

一项人工智能、化学和分子机器人的交叉研究,加速创新和药物发现,并简化复杂的化学过程自动化...

编辑 | 萝卜皮深入了解各类化学物质的最佳一般反应条件&#xff0c;可以加速创新和药物发现&#xff0c;并使复杂的化学过程自动化且易于使用&#xff0c;对生物医药、材料研究具有重要意义。然而&#xff0c;有机反应的一般条件很重要但很少见&#xff0c;以往识别它们的研究通…

【实体对齐·综述】An Experimental Study of State-of-the-Art Entity Alignment Approaches

文章目录0.总结1.Introduction2.Preliminaries2.2 Scope and Related work2.2.1 Entity Linkingentity disambiguation2.2.2 Entity resolutionentity matchingdeduplicationrecord linkage2.2.3 Entity resolution on KGs2.2.4 EA3.general框架3.1 Embedding Learning Module3…

汽车生产线上的工业机器人是如何工作的?

来源&#xff1a;宝石部落 责任编辑&#xff1a;朱光明 审核人&#xff1a;王颖十年来&#xff0c;随着机器人在制造业的普遍应用&#xff0c;我国工业机器人产业规模快速增长。2021年&#xff0c;我国工业机器人产量达36.6万台&#xff0c;比2015年增长了10倍&#xff0c;市场…

【实体对齐·HGCN】Jointly Learning Entity and Relation Representations for Entity Alignment

文章目录1.动机2.输入输出3.相关工作4.模型4.1 GCN4.2 approximating relation representations4.3 joint entity and relation alignmentHGCN: “Jointly Learning Entity and Relation Representations for Entity Alignment”. Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wa…

Science:海马中如何实现选择性地招募神经元来巩固记忆?

来源&#xff1a;brainnews作者&#xff1a;brainnews创作团队神经元网络活性的标志是选择性地将神经元招募到活跃的集合中&#xff0c;形成暂时稳定的活动模式。在哺乳动物的海马体中这种神经元集合在ripples&#xff08;~200Hz&#xff09;振荡期间反复激活&#xff0c;支持空…

往年笔试题

文章目录1 概率1.1 条件概率.每天9点到10点&#xff0c;小明和小红在同一个车站乘坐公交车上班。小明坐101路公交车&#xff0c;每5分钟一班{9:00, 9:05, 9:10, …}&#xff1b;小红坐102路公交车&#xff0c;每10分钟一班{9:00, 9:10, 9:20, …}&#xff0c;问小明和小红每天相…

量子生物学的未来:量子理论如何帮助理解生命?

导语2022年诺贝尔物理学奖授予了关于量子信息科学的基础性研究。一百多年前&#xff0c;量子革命为我们带来了晶体管和激光&#xff0c;今天&#xff0c;基于量子信息的新技术正在让我们进入一个新的量子信息时代。事实上&#xff0c;已有研究表明&#xff0c;在生命过程中也存…

【量化投资1】

文章目录0.相关包及常识1.股票买卖收益分析2.双均线策略2.1 均线2.2 双均线2.2.1 金叉死叉的获取量化投资0.相关包及常识 股票的买入卖出&#xff1a;最少为一手&#xff0c;100股 tushare open:开盘价格&#xff0c;close:收盘价格 1.股票买卖收益分析 每次至少买入1手最后…

超高效人工光电神经元成真?速度比自然神经元快3万倍,研究登Nature子刊

来源&#xff1a;悦智网作者&#xff1a;Charles Q. Choi翻译&#xff1a;机器之心原文链接&#xff1a;https://spectrum.ieee.org/neuromorphic-computing-superconducting-synapseAI系统越来越受限于为实现其功能的硬件。现在&#xff0c;一种新的超导光子电路问世&#xff…

2022年工业机器人的5大应用行业

来源&#xff1a;工业机器人前言截止至2022年&#xff0c;在中国60&#xff05;的工业机器人应用于汽车制造业&#xff0c;其中50&#xff05;以上为焊接机器人&#xff1b;在发达国家&#xff0c;汽车工业机器人占机器人总保有量的53&#xff05;以上。‍本文梳理了五大应用行…

【java spring学习1】IOC理论,spring用DI实现IOC

狂神说java spring:让java 开发更容易 IOC&#xff1a;控制反转 AOP&#xff1a;面向切面编程&#xff08;业务面&#xff09; 2. spring组成和扩展 2.1spring 组成 Sprint AOP ORM:对象关系映射 Context:UI界面、邮件验证等 2.4 拓展 学习路线&#xff1a; spring boot:构…

深度学习以最佳纳米尺度分辨率解决重叠单个分子的3D方向和2D位置,生成蛋白质图片...

编辑 | 萝卜皮偶极扩散函数 (DSF) 工程重塑了显微镜的图像&#xff0c;可以最大限度地提高测量偶极状发射器 3D 方向的灵敏度。然而&#xff0c;严重的泊松散粒噪声、重叠图像以及同时拟合高维信息&#xff08;包括方向和位置&#xff09;使单分子定向定位显微镜&#xff08;SM…

【大数据学习-hadoop1】大数据如何处理

文章目录1. 大数据启蒙1.1 意义1.1.1 查找元素1.1.2 单机处理大数据问题1.2 历史1.3 hadoop1. 大数据启蒙 学习视频 大数据多&#xff0c;复杂度很重要&#xff0c; 内存不够&#xff0c;分治处理IO仍成为瓶颈&#xff0c;多机器并行多机器间通信也可以并行&#xff0c;但仍是…

自动驾驶数据之争,走向合规

报道数字经济 定义转型中国撰文 | 泰伯网 编辑 | 鹿野2015年12月&#xff0c;一辆百度无人车从京新高速到五环进行了最高时速达100公里的全自动行驶&#xff0c;将国内自动驾驶推向大众视野。当自动驾驶产业随时间沉淀驶入商业落地的下半场&#xff0c;百度对这场自动驾驶持久…

【推荐系统算法学习笔记1】基本架构、专有名词、构建流程

文章目录1.架构1.1 大数据框架&#xff1a;lambda 架构的1.2.基本概念2. 推荐模型构建流程2.1 数据2.1.1 数据来源2.1.2 数据清洗、处理2.2 特征工程2.3 算法&#xff08;机器学习&#xff09;来源1.架构 推荐算法架构 召回 协同过滤基于内容的基于隐语义的 排序 召回决定了推…

DeepMind专题之创始人访谈|DeepMind创始人Demis Hassabis:AI 的强大,超乎我们的想象...

来源&#xff1a;图灵人工智能作者&#xff1a;黄楠、王玥编辑&#xff1a;陈彩娴导读:DeepMind&#xff0c;位于英国伦敦&#xff0c;是由人工智能程序师兼神经科学家戴密斯哈萨比斯&#xff08;Demis Hassabis&#xff09;等人联合创立的Google旗下 前沿人工智能企业。其将机…

世界首个!Meta AI开放6亿+宏基因组蛋白质结构图谱,150亿语言模型用两周完成...

来源&#xff1a;ScienceAI编辑&#xff1a;陈萍、杜伟如今&#xff0c;在蛋白质结构预测领域&#xff0c;各大厂也出现了「百家争鸣&#xff0c;百家齐放」。今年&#xff0c;DeepMind 公布了大约 2.2 亿种蛋白质的预测结构&#xff0c;它几乎涵盖了 DNA 数据库中已知生物体的…

谷歌用AI研发「乒乓球机器人」,4分钟对拉300多次,还能指哪打哪!

一个人怎么练习乒乓球&#xff1f;或许这事你可以问问谷歌。最近&#xff0c;谷歌又玩新花样&#xff0c;这回是乒乓球机器人AI 项目&#xff0c;号称和人类对战时能够连续接球340次&#xff1f;&#xff01;要知道&#xff0c;让解说员激动到破音的「乒乓球史上最疯狂一球」—…