我在 MIT 人工智能研究实验室工作一年学到的

e7ffe0c714de7497c9bf0a3cfe98b075.jpeg

来源:AI科技评论

Mike Ferguson ,麻省理工学院大脑和认知科学系 (MIT BCS) 担任研究软件工程师/ML工程师。专门研究 Brain-Score(一种衡量类脑 AI 的工具)。他于 2021 年春季毕业于弗吉尼亚大学,获得计算机科学和应用数学学士学位,以及认知科学和哲学学士学位。

5c056f21180a917a1a37bcf88e0a3877.jpeg

图注:Mike Ferguson

在本文中,Mike分享了在麻省理工学院人工智能实验室一年中学到的 5 件事,包括他生活、成功和知识的一些看法,希望你觉得有趣或有用。

1

承认自己的盲区,质疑一切

Mike在开始在麻省理工学院工作之前,刚从 UVA 毕业,主修计算机科学和认知科学,并辅修哲学和数学,自我感觉还不错,然而,当他第一次参加麻省理工学院周会时傻眼了——他发现自己最多理解了讨论内容的大约 10-20%,在接下来的几周内他都在怀疑人生:难道智商太低不配进入麻省理工学院吗?为什么看起来只有自己不懂的样子?

Mike注意到,实验室最聪明的人总是不断地提出问题,仅在第一周,他遇到了 5 或 6 个研究 AI 和神经科学交叉领域的人,研究 AI 和神经科学的交叉点的时间比他活着的时间还长。即使他们在领域以最大的专注度研究的数十年,甚至达到了绝对的巅峰,但还是在不断提出问题,解决问题和验证假设。

他明白自己来麻省理工的目的就是来不断解决不懂之处的。他放弃了伪装自己,坦然承认自己不了解目前进展的工作。

从不停止提问,每个疑问代表着一次机会——可以缩小理解差距,提高自己的知识。正是对自己已有知识的充分认识,思考对立面是什么,才会拓展自己的知识边界。总是支持同事观点,总是希望别人知道他们有多聪明,是缺乏安全感的表现。在一个没有认知冲突的安全环境中,只会将自己的置于温水煮青蛙的境地。

不要想为什么要提问,而是不要停止提问。当你思考永恒、生命和现实背后奇妙结构的奥秘时,你不感到敬畏吗?这就是人类思维的奇迹——使用它的结构、概念和公式作为工具来解释人类的所见、所感和所触。

现在,他已经养成了如果被问到一个问题,他会迅速反映说“我不确定,我必须调查一下”或“很好建议,我必须进行更多试验才能确认”。

2

有时直率效果更好

“不要粉饰狗屎——它只会阻碍科学进步。我们没时间搞那些废话。”

当他被告知在麻省理工学院实验室担任的职位时,Mike想到了自己本科期间结识的从麻省理工学院 EECS 获得学士和博士学位的教授。他跑去咨询该教授一堆问题:麻省理工学院怎么样?文化上与 UVA 的异同?长相怪异的蒂姆·比弗(Tim Beaver)是怎么回事?波士顿物价为什么这么贵……

教授告诉他很多很棒的技巧,但他特别记得的是他的“警告”:“在麻省理工学院,直率无处不在。如果你有一个愚蠢的想法,人们会告诉你的。如果你不擅长你所做的事情,人们也会告诉你;如果你的假设是垃圾,对方无论是在几个人的房间里都会对你指出。”

Mike拿小本本记下,在几个月后召开了他的第一次实验室会议时就领教了其中厉害......他有一些想法,被大家告知不成熟;他犯了一个技术错误,被人直接叫了出来。麻省理工学院的每个人都会遇到这种情况——无论你在《Science》上发表了 13篇论文,还是从未发表过。这似乎都是在麻省理工学院会遇到的一种文化。事实上,如果有听众不断插话和提问,这甚至被视为一种尊重的表现——意味着他们很感兴趣!如果自己的演示没有人打断,那可能是一件乏味的事情。

对知识的探索和对科学前沿的推动在MIT是神圣的,这种能够获得坦率、客观的反馈尤为推崇。在MIT,直率沟通的时间和地点是随时随地的,你可以专注于工作,而不必担心批评是对本人的,它们仅仅是对工作的批评。在过去的几个月里,Mike来寻求这种直率和客观的反馈,随着时间的推移和获得该领域的知识方面提供了最大的“物有所值”。

我们尝试学习的时间有限尽己所能,那么为什么不去拥抱批评这种直观反馈呢?

3

学徒心态

“反复的失败会让你的精神变得坚强,并以绝对清晰的方式向你展示必须如何去做。”

Mike有一项坚持了 3 年多的 Book-a-Week 挑战。在近四年的时间里阅读了 170 多本关于人工智能、哲学以及作为人类的意义的书籍。

他从书中获取的是:要成为某事的大师,真正了解一个领域并产生影响,必须经历发展的各个阶段。完成正规教育后,你可以进入“学徒”阶段,必须学习做事的方式和规则(无论是明确的还是隐含的)。持续 3 年到 10 年以上,接下来进入创造阶段,在这个阶段可以扩展并发挥自己的创造性和独立性。最后,你进入掌握阶段,掌握一门学科或领域就是一种投资。通过掌握一门学科,以一种有意义的方式发挥您的全部潜力。这是对未来幸福和成就的投资,也是一种避免陷入死胡同或随着年龄增长而感到不快乐的方法。

在深入学习人工智能/神经科学领域,Mike就觉得自己正处于学徒阶段,用他最喜欢的作家Robert Greene 的话来说,“接受理想的学徒制”。提出问题,热切地寻求知识,在学习事物时永远不要有优越感——任何与自己领域相关的事物,即使是看似无关的事物,都值得学习。

4

成为一个有自主意识的劳动者

人工智能是否可以体验情绪是一个非常有争议的话题,他已经写了很多文章,惹恼了他的实验室伙伴,而且还没有接近答案,「我只知道我们是人类,拥有数千年的进化遗产。我们的幸福、悲伤、希望、胜利和失败等情绪或思维是非常独特的。它们正是使我们成为人类的东西,也是在人工智能中很难很快复制的东西。」

我们的大脑出现故障的方式比正常运行的方式要多,多巴胺水平可能会失控,出现病变,信号丢失或重定向不当……故障列表几乎是无穷无尽的,我们都会犯错,这是一件再普通不过的事,我们的所有情绪都是有价值的,是人能够区别于类脑系统和机器的重要部分。

在这个美丽的星球上,我们一直是一个有知觉的人,一个会思考的动物,而这本身就是一种巨大的特权和冒险。

想想之前已经被历史遗忘的所有故事,生存、爱情、苦难、逆境等主题在几个世纪中回响,独特的思维是时空里永恒且独特的纪念。所以,不管你生活中发生的任何其他事情,无论好坏,不管日常无聊的生存任务,不管你个人的得失:只要记住,成为一个有意识的、工作的人就是一项了不起的壮举。

5

科学是一种思维方式,而非知识体系

近来一种“反科学”的风气在美国各地兴起,这在很多方面令人非常不安。卡尔·萨根(Carl Sagan),在 1996 年已经惊人地预测到了这种现象:

对于我子孙时代的美国,我有一种预感——那时,美国是一种服务和信息经济,几乎所有的制造业都转移到其他国家;令人敬畏的技术力量掌握在极少数人手中,代表公共利益的人甚至无法理解这些问题;人们失去制定自己议程或明智地质疑当权者的能力;人们的批判能力衰退,关于伪科学和迷信的轻信陈述泛滥,人们几乎不知不觉地滑回迷信和黑暗中去......

——卡尔·萨根《恶魔出没的世界:科学就像黑暗中的蜡烛》

一种对科学事业本身的怀疑似乎也越来越流行,怎样对抗这种“反科学之风”?Mike根据在MIT迄今所观察到的事情提供了一些见解。

首先,就是上文第一章节所说——质疑一切。没有任何东西可以免于审查和合理的怀疑。当你看到一篇文章时,先看看是谁写的,看看他们之前的工作,是否有资本推动。在得出结论之前,要交叉地参考来源进行确认。问问别人为什么要争论,以及可以得到什么。如果论点存在偏见历史,那么自己很可能只看到事情的一面。

第二,分析论据,寻找逻辑中的常见错误,比如人身攻击、不合逻辑的推理,选择和确认偏差(其中选择性偏好最为要紧,因为它产生的深远影响难以被发现);跟随作者提出论点的过程,确保论点在哲学上是有效的(correct,前提正确)、合理的(sound,结论从前提中得到);警惕错误的暗示、毫无根据的主张和被人为控制的图表数据;要为所有论断寻求证据,没有证据就可以断言的东西,也可以在没有证据的情况下被驳回。

最后,认识到人都会犯错。数据往往不完整或有偏差,新的证据出现可能会冲击原本立论。思想是可以改变的,也应该去改变。成熟的做法是——面对新的事实时,让旧观念消失,并承认所犯的任何错误。

f11f370c3eacc631eaf975bd0db1d839.jpeg

图片来源:Greg Rakozy

Mike希望这些建议可以帮助我们在这个看似“后真相”的世界中找到方向,学会深入挖掘论点,对结论的得出方式进行分析。科学是一种思维方式,是开放思想和怀疑主义之间的微妙界线。关键是,只要稍加实践,科学就能深刻地影响一个人的世界观。

参考链接:

https://towardsdatascience.com/5-things-i-have-learned-working-in-an-mit-ai-research-lab-for-a-year-a65b4fcaef31

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

93f869f0bf68ebf89f150e1e9025f379.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481374.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《科学》重磅:首次实现监测多种神经元间实时毫秒级互动!

*仅供医学专业人士阅读参考大脑的复杂之处在于众多神经元之间的协同作用,若能在同一时间显示不同神经元群体的电活动,那么将大大加深我们对于大脑功能的理解。基因编码的电压指示蛋白(GEVI)是一类在细胞膜电位变化后产生可检测信号…

冯·诺依曼的遗产:寻找人工生命的理论根源

来源:集智俱乐部 作者:东方和尚现在的人工智能研究如火如荼。然而,尽管AlphaGo Zero早已经秒杀人类智慧,但它却是冷冰冰、无生命的机器,因为它缺少一颗热血沸腾的“心”。当我们看到小虫子沿着崎岖的路面爬向食物&…

AI好奇心,不只害死猫!MIT强化学习新算法,智能体这回「难易通吃」

来源:新智元编辑:David【新智元导读】MIT强化学习新算法,根据监督稀疏程度自动调整AI智能体「好奇心」,高低难度任务通吃。人人都遇见过一个古老的难题。周五晚上,你正试图挑选一家餐厅吃饭,但没有预定。你…

2022,青年科学家最关注的基础研究是什么?

来源:科学网编辑:方圆排版:李言文:韩扬眉科学问题,起初由科学家提出,最终被科学家突破,才是一个完美的探索闭环。11月27日,“十大基础研究关键词”在2022年“青年科学家502论坛”上公…

地球能够调控自己的温度,但是……

来源:公众号“原理”地球的历史并非一帆风顺,比如,地球气候曾经历过一些巨大的变化,从全球火山活动,到全球降温的冰期,还有太阳辐射的明显波动。然而,在过去37亿年里,生命的故事却未…

连发Cell,Nature顶级期刊,揭示脊髓和脑干在触摸中令人惊讶的新作用

来源:生物通触觉对我们做的几乎所有事情都至关重要,从家里的日常工作到在可能隐藏危险的陌生地形上导航。触觉对我们做的几乎所有事情都至关重要,从家里的日常工作到在可能隐藏危险的陌生地形上导航。长期以来,科学家们一直想弄清…

2022年度“十大基础研究关键词”在深发布

来源:读特客户端11月27日,“青年科学家50论坛”发布2022年度“十大基础研究关键词”。这些关键词由“科学探索奖”的获奖人提名、投票并经科委会确认。十个关键词,体现出以获奖人为代表的中国杰出青年科学家群体,对未来科技发展的…

“信创”的热火烧到了物联网

资料来源:综合整理自互联网整理发布:物联网智库 导读产业淘沙,市场铄金,蛰伏已久的风口终究要来了。如果说今年有什么板块在下半年异军突起,信创一定榜上有名。在大热赛道表现平平的十月份,信创板块指数累计…

神经网络与图灵机的复杂度博弈

来源:集智俱乐部 作者:东方和尚1931年,天才数学家图灵提出了著名的图灵机模型,它奠定了人工智能的数学基础。1943年,麦克洛克 & 皮茨(McCulloch & Pitts)两人提出了著名的人工神经元模型…

自主可控时代,物联网呼唤怎样的操作系统?

来源:物联网智库作者:Levin导读物联网产业的竞争正在向着生态系统发展,包括互联网巨头和运营商在内的企业都在基于平台,积极布局上游关键技术和下游解决方案。根据工信部发布的数据显示,截至今年8月末,三家…

在不确定的时代,用理性的思考去对抗群体的疯狂

来源:混沌巡洋舰本文整理摘编自《群体的疯狂》 威廉伯恩斯坦著 王兴华译 中信出版集团 2022.11近两个世纪之前,一位年轻的名叫查尔斯•麦基的苏格兰人,以令人难忘的方式同时攻击上帝和玛门。他出生于1814年,是一名颇受欢迎的诗人、…

深度学习的下一个十年,延展基础科学研究变革的「角力场」

来源:AI科技评论在更大的科学命题中,有人找到了更激动人心的原动力。图灵奖获得者、前微软技术研究员 Jim Gray 通过四种范式描述了科学发现的历史演变。从基于经验主义——即对自然现象的直接观察之“第一范式”,到以数据密集型科学发现&…

AI 硬件加速的重大飞跃!可训练机器学习硬件的光学芯片

编辑 | 绿萝根据麦肯锡(McKinsey)最近的一份报告,机器学习应用每年飙升至 1650 亿美元。但在机器能够执行诸如识别图像细节等智能任务之前,必须先对其进行训练。训练现代人工智能 (AI) 系统(如特斯拉的自动驾驶仪&…

机器人自己造自己,究竟是怎么办到的?

来源:AI科技大本营整理:杨阳说起自我创生,首先想到的就是克隆。或许你已经听说过欧洲的小龙虾灾难,因为一只大理石纹螯虾的突发变异,导致的孤雌生殖在极短时间内就能克隆出成千上万只龙虾。虽然说是吃货福音&#xff0…

量子计算和人工智能:应该知道的10件事

来源:中国机器人网近年来,新兴技术变得突出。其中,量子计算具有改变我们世界的独特潜力。量子计算已经显示出有希望的证据,以令人难以置信的方式加速启发式计算。因此,在复杂的解决方案中应用量子计算来解决药物和材料…

用量子计算机创造史上首个虫洞 加州理工学院团队发Nature封面文章

来源:FUTURE远见选编:FUTURE | 远见 闵青云 日前,来自美国加州理工学院的Maria Spiropulu领导的团队使用谷歌的量子计算机对全息虫洞进行量子「模拟」。据称,该研究团队创造了有史以来第一个虫洞。论文作者表示,他们的…

Science Bulletin | 从“网络神经科学”到“网络神经外科”

随着科技进步,人类对大脑的认识不断深入。2004年脑的大尺度网络论述初步形成,2005年脑连接组学的概念首次提出,到2017年Sporns等在Nature neuroscience撰文系统论述,并提出了Network neuroscience的概念。与此同时,欧美…

科幻电影里的机器人假肢已经照进现实

来源:机器人大讲堂编辑:Jack排版:麦子20日晚,在卡塔尔世界杯开幕式上,一个身有严重残疾,胸部以下几乎缺失的卡塔尔人一亮相就赢得全场欢呼。一直以来,人们对坚强不屈的肢体残障人士都深怀敬意&a…

马斯克脑机接口最新演示:猴子学会意念打字,预计6个月内人体试验

来源:文章转载自机器之心(ID:almosthuman2014)在迟到半个多小时之后,马斯克在今日的 Neuralink Show & Tell 演示活动中展示了脑机接口的最新进展。在脑机接口领域,马斯克创办的Neuralink一直走在前列。…

Science:DeepMind又一突破,AI玩转了西洋陆军棋,跻身历史top3

对棋类游戏的掌握程度,一直是判断人工智能(AI)是否真正智能的依据之一,因为这类游戏可以被用来评估 AI 代理在受控环境下自主开发和执行策略的能力。如今,AI 在此前尚未掌握的经典棋类游戏 Stratego(西洋陆…