符合人类创作过程的AIGC:自动生成长故事的模型出现了

244122b49997684726bcbe651f26b01c.png

来源:机器之心报道

编辑:小舟、蛋酱

AI写文章还是得模仿人类的创作方法。

在今天的人工智能领域,AI 写作神器层出不穷,技术和产品可谓日新月异。

如果说 OpenAI 两年前发布的 GPT-3 在文笔上还稍欠火候,那么前段时间的 ChatGPT 的生成结果可以算是「文笔华丽、情节饱满、逻辑自洽兼而有之」。

有人说,AI 要是动起笔来,那真是没人类什么事了。

但不管是人类还是 AI,一旦把「字数要求」提高,文章就会变得更难「驾驭」。

近日,华人 AI 研究科学家田渊栋和其他几位研究者最近一起发布了一个新的语言模型——Re^3,这项研究也入选了 EMNLP 2022。

c26348264605a03681758e4b051414c1.jpeg

论文链接:https://arxiv.org/pdf/2210.06774.pdf

田渊栋曾在知乎上介绍这个模型:

Re^3 的想法极为简单,通过设计 prompt 让它生成一致性强的故事,完全不需要微调大模型。我们跳出语言模型的逐词生成的线性逻辑,改用层次化生成方式:先在 Plan 阶段生成故事角色,角色的各种属性和大纲,然后在 Draft 阶段给定故事大纲和角色,反复生成具体的段落,这些具体段落由 Rewrite 阶段筛选,挑出与前一段落高度相关的生成段落,而丢弃关系不大的(这需要训练一个小模型),最后在 Edit 阶段修正一些明显的事实错误。

方法介绍

Re^3 的思路是通过递归 Reprompt 和调整生成更长的故事,这更符合人类作家的创作过程。Re^3 将人类写作过程分解为规划、草稿、改写和编辑 4 个模块。

3a4e39123b49479687e2454ddae9ce00.jpeg

规划(Plan)模块

如下图 2 所示,规划模块会将故事前提(Premise)扩展为背景、人物角色和故事大纲。首先,背景是故事前提简单的一句话扩展,使用 GPT3-Instruct-175B (Ouyang et al.,2022) 获得;然后,GPT3-Instruct175B 再生成角色名称,并根据前提和背景生成角色描述;最后,该方法 prompt GPT3-Instruct175B,以编写故事大纲。规划模块中的组件是通过 prompt 自己生成的,将被反复使用。

ceefc39c2dd108fb33d3b3ce4f9a16e5.jpeg

草稿(Draft)模块

针对规划模块得到的每一条大纲,草稿模块会继续生成几个故事段落。每个段落都是从结构化 prompt 生成的固定长度续写,结构化 prompt 由递归 reprompt 形成,草稿模块如下图 3 所示。

0e710140c717902b61303b76e50d64f0.jpeg

改写(Rewrite)模块

生成器的第一个输出通常是低质量的,就像人们完成的初稿,二稿可能需要在反馈的基础上改写一篇文章。

改写模块通过根据与先前段落的连贯性和与当前大纲点的相关性对草稿模块输出重新排序来模拟改写过程,如下图 4 所示。

b5398e2dfbcc77b3cf64f2143f045a00.jpeg

编辑(Edit)模块

与大幅改写不同的是,编辑模块是对通过规划、草稿和改写模块生成的段落的局部编辑,进一步完善生成内容。具体来说,目标是消除长序列的事实不一致。当人们在校对时发现一个小的事实不连续,可能只是简单地编辑一下有问题的细节,而不是对高层次的文章规划进行重大修改或进行实质性的改写。编辑模块通过两个步骤来模仿人类创作的这个过程:检测事实的不一致,并对其进行纠正,如下图 5 所示。

2705b67fa77f506cc630f45e6975fd92.jpeg

评估

在评估环节,研究者将任务设定为在一个简短的初始前情下生成一个故事。由于「故事」很难用基于规则的方式来定义,研究者没有对可接受的输出施加任何基于规则的约束,而是通过几个人为注释的指标来评估。为了生成初始前提,研究者用 GPT3-Instruct-175B 进行了 prompt,以获得 100 个不同的前情。

Baseline

由于先前的方法与 Re^3 相比更侧重于短故事,所以很难直接比较。于是研究者使用了以下两个基于 GPT3-175B 的基线:

1. ROLLING,通过 GPT3-175B 一次生成 256 个 token,使用前情和所有先前生成的故事文本作为 prompt,如果超过 768 个 token,则左截断 prompt。因此,「滚动窗口」最大上下文长度是 1024,与 RE^3 中使用的最大上下文长度相同。在生成了 3072 个 token 后,研究者使用了与 RE^3 相同的故事结束机制。

2. ROLLING-FT,与 ROLLING 相同,只是 GPT3-175B 首先会对 WritingPrompts 故事中的几百个段落进行微调,这些段落至少有 3000 个 token。

指标

研究者使用的几个评估指标包括:

1、有趣。对读者来说是有趣的。

2、连贯性。情节连贯。

3、相关性。忠实于最初的前情。

4、类人。被判断为是人类写的。

此外,研究者还追踪了生成的故事有多少次出现以下几方面的写作问题:

1、叙事。叙述或风格上的令人震惊的变化。

2、不一致。与事实不符或包含非常奇怪的细节。

3、混乱。令人困惑或难以理解。

4、重复性。高度的重复性。

5、不流畅。频繁的语法错误。

结果

aaab707098cd3304d010b143b8275587.jpeg

如表 1 所示,Re^3 在根据预期前情写一个较长的故事方面非常有效,同时能保持连贯的总体情节,验证了研究者受人类写作过程启发而做出的设计选择,以及递归 reprompting 生成方法。与 ROLLING 和 ROLLING-FT 相比,Re^3 在连贯性和相关性方面都有明显提高。注释者还将 Re^3 的故事标记为「具有明显较少的冗杂写作问题」。

Re^3 表现出了绝对意义上的强大性能:注释者认为在两次对比中,Re^3 的故事分别有 83.3% 和 80.0% 是由人类写的。表 2 显示了 Re^3 的一个经过大量删节的故事实例,可以看出很强的连贯性和前情相关性:

86b309c1fb16c18f92335f59eaa765e9.jpeg

尽管如此,研究者仍从质量上观察到 Re^3 仍有很大的改进空间。

表 3 中显示了两个共同的问题。首先,尽管 Re^3 几乎总是在某种程度上遵循故事前情,但与基线故事不同,它们可能无法捕捉到前提的所有部分,也可能无法遵循规划模块生成的部分大纲(例如,表 3 中前情和大纲的第一部分)。其次,由于改写模块,特别是编辑模块的失败,仍然有一些混乱的段落或矛盾的语句:例如,在表 3 中,人物 Jaxon 在某些地方有一个矛盾的身份。

24b3647538474a34c1fd09d9c4bd94ad.jpeg

不过,与滚动窗口方法(rolling window)不同,Re^3 的规划方法能够「自我纠正」,回到最初的情节。表 3 中故事的后半部分说明了这种能力。

分析

消融实验

研究者探讨了 Re^3 的各个模块的相对贡献:规划、草稿、改写和编辑,并依次对每个模块进行消融实验。Draft 模块除外,因为尚不清楚没有它的话系统会如何运行。

52c2ad6e79a1964a7ad73cfb6ae07abd.jpeg

表 4 显示,模仿人类规划和改写过程的「规划」和「改写」模块对整体情节的连贯性和前提的相关性至关重要。然而,「编辑」模块对这些指标的贡献很小。研究者还从质量上观察到,在 Re^3 的最终故事中仍然存在许多连贯性问题,这些问题没有被编辑模块所解决,但这些问题可以由一个细心的人类编辑来解决。

「编辑」模块的进一步分析

研究者使用了一个可控的环境,以研究「编辑」模块是否至少能检测到基于角色的事实不一致。检测子系统称为 STRUCTURED-DETECT,避免与整个编辑模块混为一谈。

如表 5 所示,当检测基于角色的不一致时,根据标准的 ROC-AUC 分类指标,STRUCTUREDDETECT 优于两个基线。ENTAILMENT 系统的 ROC-AUC 得分勉强优于偶然表现(0.5),突出了核心挑战,即检测系统必须是压倒性的精确。此外,STRUCTURED-DETECT 的设计是为了扩展到较长的段落。研究者假设,与基线相比,性能差距会在有较长输入的评估中扩大。

c15800a35996f70e2171d5710dbf6069.jpeg

即使在这种简化的环境中,所有系统的绝对性能仍然很低。此外,许多生成的完整故事包含非角色的不一致,例如背景与当前场景的不一致。虽然研究者没有正式分析 GPT-3 编辑 API 在检测到不一致之处后的修正能力,但也观察到它可以修正孤立的细节,而在处理较大的变化时会很吃力。

综上所述,来自检测和修正子系统的复合错误使得本研究目前的编辑模块很难在数千字的范围内有效地改善事实的一致性,而不同时引入不必要的变化。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

968269ef0ad2fcdcd1ba0f9110d882a2.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481288.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Science:挑战传统理论,重塑联想学习概念

来源:brainnews编译作者:Young(brainnews创作团队)校审:Simon(brainnews编辑部)学会根据环境线索预测奖赏对生存至关重要。人们认为,动物通过在结果偏离预期时更新预测来学习预测奖赏…

【完结】史上最萌最认真的机器学习/深度学习/模式识别入门指导手册(四)

小夕再次感谢大家的关心,你们的小夕已经满血复活啦!小夕会坚持为大家带来独一无二的干货和故事哦。前言有读者反映,ta若能完成这个系列的阶段三,就在他们实验室被奉为神了。因为他们实验室每个人人手一本《模式分类》,…

文本相似度

《统计学习方法》-李航 损失函数总结 概要 <div id"post_detail">NLP点滴——文本相似度 目录 前言字面距离common lang库相同字符数莱文斯坦距离(编辑距离)定义实现方式Jaro距离定义实现方式应用SimHash定义基本流程相似性度量存储索引实现应用语义相似性背…

「可解释知识图谱推理」最新方法综述

来源&#xff1a;图灵人工智能近年来&#xff0c;以深度学习模型为基础的人工智能研究不断取得突破性进展&#xff0c;但其大多具有黑盒性&#xff0c;不 利于人类认知推理过程&#xff0c;导致高性能的复杂算法、模型及系统普遍缺乏决策的透明度和可解释性。在国 防、医疗、网…

小夕的算法入门之路

小夕都快要成XX入门指导专业户了QAQ&#xff0c;小夕是要写人工智能和计算机干货的啊喂~好吧&#xff0c;问小夕如何入门算法的小伙伴太多了&#xff0c;还是写一篇文章吧。小夕还收到了“如何准备托福”和“如何准备考研英语”的求助&#xff0c;然而小夕没有考过&#xff0c;…

AIGC发展路径思考:大模型工具化普及迎来新机遇

来源&#xff1a;腾讯科技摘要&#xff1a;当前&#xff0c;AIGC引发社会关注&#xff0c;尤其是大模型和开源模式的推动&#xff0c;让AIGC有望成为AI应用落地的新领域。一方面大模型和开源加速降低AIGC应用门槛并拓展应用范围&#xff1b;另一方面AI与创新的界限进一步模糊&a…

0基础讲解机器学习算法-朴素贝叶斯分类器

朴素贝叶斯分类器可以说是最经典的基于统计的机器学习模型了。首先&#xff0c;暂且不管贝叶斯是什么意思&#xff0c;朴素这个名字放在分类器中好像有所深意。 一查&#xff0c;发现这个分类器的英文是“Nave Bayes”。Nave&#xff08;读作“哪义务”&#xff09;即幼稚的、…

你可以在虚拟世界里过上美好生活吗?

来源&#xff1a;混沌巡洋舰时间来到 2095 年。地球表面满目疮痍&#xff0c;核战争和气候变化引发一场灾难。你只能过着困苦的生活&#xff0c;躲避匪帮&#xff0c;避开地雷。你的主要愿望就是活下去。或者&#xff0c;你也可以将自己的肉体锁存在安保严密的仓库里&#xff0…

web of science,SSCI索引,带你入门!

第一步;选择数据库&#xff0c;一般选择web of science 核心文集 第二步&#xff1a;在更多设置中选择web of science 第三步&#xff1a;点击被引频次后面的数字 第四部&#xff1a;点击查看其他的被引频次计数 根据自己引用的选择次数 注意事项&#xff1a;web of sci…

陶哲轩破解数十年前几何猜想,用反例证明它在高维空间不成立,同行:推翻的方式极尽羞辱...

Pine 萧箫 发自 凹非寺量子位 | 公众号 QbitAI又一个重要数学猜想&#xff0c;被陶哲轩和他的博士后破解了&#xff01;此前陶哲轩在博客上发了个小预告&#xff0c;就已经有不少人赶来围观&#xff1a;看起来是个大新闻。现在&#xff0c;不少人期待的正式版论文&#xff0c;终…

手把手教你-如何查询中文期刊是否属于核心期刊!

1.进入图书馆、点击数据库检索、在输入cscd中国科学引文数据库&#xff08;Chinese Science Citation Database&#xff0c;简称CSCD&#xff09; 2 3 4 5 6点击详细信息进入下面的页面&#xff0c;可判断文档是否属于核心期刊&#xff01;

《机器学习系列-强填EM算法在理论与工程之间的鸿沟(上)》

小夕曾经问一位做机器学习理论的学姐&#xff1a;“学姐学姐&#xff0c;EM算法是什么呢&#xff1f;”学姐回答&#xff1a;“EM算法啊&#xff0c;就是解决包含隐变量的参数估计问题。”小夕&#xff1a;然后小夕去问一位做工程的学长&#xff1a;“学长学长&#xff0c;EM算…

2022年诺贝尔物理学奖的科学内涵辨识

|作者&#xff1a;葛惟昆(清华大学物理系)本文选自《物理》2022年第12期摘要 2022年的诺贝尔物理学奖&#xff0c;被一些人误解为证明了量子纠缠现象。实际上&#xff0c;包括爱因斯坦本人都承认量子纠缠&#xff0c;关键在于如何诠释。今年诺贝尔物理学奖的价值在于这几位物…

机器学习系列-强填EM算法在理论与工程之间的鸿沟(下)

前言在上一篇文章《机器学习系列-强填EM算法在理论与工程之间的鸿沟&#xff08;上&#xff09;》中&#xff0c;小夕用优&#xff08;恐&#xff09;雅&#xff08;怖&#xff09;的数学理论来向读者解释了EM算法的工作原理。那么从工程角度出发的EM算法又是怎样的呢&#xff…

暑期实习NLP算法岗面经总结

写文章暑期实习NLP算法岗面经总结呜呜哈做一个有思想的码农​关注他488 人赞同了该文章写在前面&#xff0c;从三月份开始找实习到现在正好两个月&#xff0c;这期间大大小小投了竹简智能、阿里、滴滴、美团、腾讯、京东、搜狗、百度、微软亚研几个公司&#xff0c;本着从小公司…

机器学习助力更好理解水的行为

来源&#xff1a;科技日报作者&#xff1a;刘霞为从理论上理解各种物质开辟更多途径科技日报北京12月19日电 &#xff08;记者刘霞&#xff09;美国一个研究团队在最新一期《物理评论快报》上刊发论文称&#xff0c;他们借助机器学习技术来理解水在零下100℃的行为。最新研究不…

期望最大化(EM)算法真如用起来那么简单?

声明&#xff1a;本文改编自订阅号“夕小瑶的卖萌屋”中的 《机器学习系列-强填EM算法在理论与工程之间的鸿沟&#xff08;上&#xff09;》、《机器学习系列-强填EM算法在理论与工程之间的鸿沟&#xff08;下&#xff09;》。前言小夕曾经问一位做机器学习理论的学姐&#xff…

预测更准确,使用机器学习改进化学品的毒性评估

编辑 | 绿萝从命运和毒性的角度来看&#xff0c;人类暴露的化学空间随着化学物质的多样性而不断扩大。欧洲和美国的化学品机构列出了大约 80 万种化学品。对于这些化学品中的大多数&#xff0c;人们对其环境归宿或毒性知之甚少。通过实验填补这些数据空白是不可能的&#xff0c…

如何优雅的追到女神夕小瑶

如果&#xff0c;你不小心迷恋上了小夕… 路人某&#xff1a;“没有如果” 捕获小夕的游戏 如果现实世界中&#xff0c;迷恋上小夕以后&#xff0c;你想捕获小夕。那么发现从上帝视角来看的话&#xff0c;你有下面好多条路几条路达成目标(&#xffe3;∇&#xffe3;) 然而你并…

文本相似度-相似度度量

NLP点滴——文本相似度 目录 前言字面距离common lang库相同字符数莱文斯坦距离(编辑距离)定义实现方式Jaro距离定义实现方式应用SimHash定义基本流程相似性度量存储索引实现应用语义相似性背景知识统计语言模型n-gram模型词向量主题模型LSAPLSALDA应用Word2Vec神经网络语言模…