你的模型真的陷入局部最优点了吗?

小夕曾经收到过一个提问:“小夕,我的模型总是在前几次迭代后很快收敛了,陷入到了一个局部最优点,怎么也跳不出来,怎么办?”

 

本文不是单纯对这个问题的回答,不是罗列工程tricks,而是希望从理论层面上对产生类似疑问的人有所启发。

真的结束于最优点吗?

 

我们知道,在局部最优点附近,各个维度的导数都接近0,而我们训练模型最常用的梯度下降法又是基于导数与步长的乘积去更新模型参数的,因此一旦陷入了局部最优点,就像掉进了一口井,你是无法直着跳出去的,你只有连续不间断的依托四周的井壁努力向上爬才有可能爬出去。更何况梯度下降法的每一步对梯度正确的估计都在试图让你坠入井底,因此势必要对梯度“估计错很多次”才可能侥幸逃出去。那么从数学上看,什么才是局部最优点呢?

 

这个问题看似很白痴,很多人会说“局部最优点不就是在loss曲面上某个一阶导数为0的点嘛”。这就不准确啦,比如下面这个马鞍形状的中间的那个点:

(图片来自《deep learning》)

 

显然这个点也是(一阶)导数为0,但是肯定不是最优点。事实上,这个点就是我们常说的鞍点

 

显然,只用一阶导数是难以区分最优点和鞍点的。

我们想一下,最优点和鞍点的区别不就在于其在各个维度是否都是最低点嘛~只要某个一阶导数为0的点在某个维度上是最高点而不是最低点,那它就是鞍点。而区分最高点和最低点当然就是用二阶导数(斜率从负变正的过程当然就是“下凸”,即斜率的导数大于0,即二阶导数大于0。反之则为“上凹”,二阶导数小于0)。也就是说,若某个一阶导数为0的点在至少一个方向上的二阶导数小于0,那它就是鞍点啦

那么二阶导数大于0和小于0的概率各是多少呢?由于我们并没有先验知识,因此按照最大熵原理,我们认为二阶导数大于和小于0的概率均为0.5!

 

那么对于一个有n个参数的机器学习/深度学习模型,“loss曲面”即位于n+1维空间(loss值为纵轴,n个参数为n个横轴)。在这个空间里,如果我们通过梯度下降法一路下滑终于滑到了一个各方向导数均为0的点,那么它为局部最优点的概率即,为鞍点的概率为,显然,当模型参数稍微一多,即n稍微一大,就会发现这个点为鞍点的概率会远大于局部最优点!

好吧我再啰嗦的举个栗子,已经反应过来的同学可以跳过这个栗子:

假设我们的模型有100个参数(实际深度学习模型中一般会远大于100),那么某一阶导数为0的点为局部最优点的概率为约为,而为鞍点的概率则为。就算我们的模型在训练时使用了特别厉害的“超级梯度下降法”,它可以每走一步都恰好踩在一个一阶导数为0的点上,那么从数学期望上来看,我们需要走步才行。而实际的projects中,哪怕数据集规模为千万级,我们分了100万个batches,然后要迭代100次,那也仅仅是走了步,你真的觉得运气可以辣么好的走到局部最优点上去吗?所以实际中,当我们的深度学习模型收敛时,几乎没有必要认为它收敛到了一个局部最优点,这完全等同于杞人忧天。

 

也就是说,如果最后模型确实在梯度下降法的指引下收敛到了一个导数为0的点,那这个点几乎可以肯定就是一个鞍点。

 

如果我们的模型真的收敛到鞍点上了,会很可怕吗?

 

这就又回到了文章开头的那副马鞍状的图。

显然,站在马鞍中央的时候,虽然很难翻过两边的山坡,但是往前或者往后随便走一步就能摔下马鞍!而在文章《batch size》中小夕讲过,我们默认使用的mini-batch梯度下降法本身就是有噪声的梯度估计,哪怕我们位于梯度为0的点,也经常在某个mini-batch下的估计把它估计偏了,导致往前或者往后挪了一步摔下马鞍,也就是mini-batch的梯度下降法使得模型很容易逃离特征空间中的鞍点。

 

那么问题来了,既然局部最优点很难踩到,鞍点也很容易逃离出去,那么为什么我们的模型看起来是收敛了呢?

 

初学者可能会说 “诶诶,会不会是学习率太大了,导致在“鞍点”附近震荡?” 首先,鞍点不像最优点那样容易震荡,而且哪怕你不断的减小学习率继续让模型收敛,你这时计算output层或者后几层的梯度向量的长度时会发现它依然离0很遥远!(这句话是有实验支撑的,不过那篇论文我找不到惹,也忘了名字了。热心的观众帮忙补充一下哦)

 

难道,踩到的鞍点太多,最后恰好收敛到一个跳不下去的鞍点身上了?

虽然高维空间中的鞍点数量远远大于最优点,但是鞍点的数量在整个空间中又是微不足道的:按前面的假设,假设在某个维度上随机一跳有10%的概率踩到导数为0的点,那么我们在101维的空间中的一步恰好踩到这个点上的概率为,也就是说在101维空间里随机乱跳的时候,有的可能性踩到鞍点身上。因此,即使有难以逃离的鞍点,那么被我们正好踩到的概率也是非常小的。

 

所以更令人信服的是,在高维空间里(深度学习问题上)真正可怕的不是局部最优也不是鞍点问题,而是一些特殊地形。比如大面积的平坦区域:

 

(图片来自《deep learning》)

 

在平坦区域,虽然导数不为0但是却不大。虽然是在不断下降但是路程却非常长。对于优化算法来说,它需要走很多很多步才有可能走过这一片平坦区域。甚至在这段地形的二阶导数过于特殊的情况下,一阶优化算法走无穷多步也走不出去(设想一下,如果终点在一米外,但是你第一次走0.5米,后续每一步都是前一步的一半长度,那么你永远也走不到面前的一米终点处)。

所以相比于栽到最优点和鞍点上,优化算法更有可能载到这种类似平坦区的地形中(如果这个平坦区又是“高原地带”,即loss值很高的地带,那么恭喜你悲剧了)。更糟糕的是,由于高维地形难以可视化,还有很多更复杂的未知地形会导致假收敛,一旦陷入到这些危险地形中,几乎是无解的。

 

所以说,在深度学习中,与其担忧模型陷入局部最优点怎么跳出来,更不如去好好考虑:

  1. 如何去设计一个尽量没有“平坦区”等危险地形的loss空间,即着手于loss函数的设计以及深度学习模型的设计;

  2. 尽量让模型的初始化点远离空间中的危险地带,让最优化游戏开始于简单模式,即着手于模型参数的初始化策略;

  3. 让最优化过程更智能一点,该加速冲时加速冲,该大胆跳跃时就大胆跳,该慢慢踱步时慢慢走,对危险地形有一定的判断力,如梯度截断策略;

  4. 开外挂,本来下一步要走向死亡的,结果被外挂给拽回了安全区,如batch normalization策略等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481127.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何与深度学习服务器优雅的交互?(长期更新)

0. 故事序言 如果有人问小夕:"小夕,要是人工智能的就业岗位一夜之间消失了,你会去转行做什么呢?" 答曰:"当然是去做Linux运维啊23333" 小夕有一台自己负责的GPU服务器,她可让小夕操碎了…

风控模型师面试准备--技术篇(逻辑回归、决策树、集成学习)

原文地址:https://zhuanlan.zhihu.com/p/56175215 编辑于2019-02-12,持续更新中,有风控建模工作经验的,或者想转行风控建模的小伙伴可以互相交流下... 一.算法 逻辑回归决策树集成学习(随机森林,Adaboost&…

step-by-step: 夕小瑶版神经网络调参指南(上)

距离上一篇文章已经过去好久好久好久啦。闭关几个月后,其实早有继续码文章的打算,先后写了一下核函数与神经网络的一些思考、文本预处理tricks、不均衡文本分类问题、多标签分类问题、tensorflow常用tricks、噪声对比估算与负采样等文章,结果…

谷歌发布端到端AI平台,还有用于视频和表格的AutoML、文档理解API等多款工具

谷歌又有了大动作。在大洋彼岸的谷歌Cloud Next conference大会上,谷歌一口气发布了多款AI新品和工具,主要包括: 端到端的AI平台 用于处理视频和表格数据的AutoML Tables和AutoML Video 文档理解API 联络中心AI 视觉产品搜索 对于开发者…

跨性别,你所不知道的事

今晚原计划在订阅号里推送南溪妹子前几天录制的跨性别科普视频,没想到今天收到南溪的私信,说不做科普了,还是算了吧。急忙去了解了一下原因 (http://www.zhihu.com/pin/963101597957644288) ,才知道南溪因这段视频所遭受的无故攻击…

文本分类问题不需要ResNet?小夕解析DPCNN设计原理(上)

历史回顾回顾一下图像和文本的发展史,似乎这就是一场你追我赶的游戏。在上一阶段的斗争中,朴素贝叶斯、最大熵、条件随机场这些理论完备的统计机器学习模型使得文本分类、中文分词、NER等诸多自然语言处理问题取得了差强人意(释义&#xff1a…

【Tensorflow】TensorFlow的嵌入layer和多层layer

计算图中的操作 # python 3.6 import tensorflow as tf import numpy as npsess tf.Session()# 将张量和占位符对象组成一个计算图,创建一个简单的分类器# 一、计算图中的操作 # 1. 声明张量和占位符,创建numpy数组,传入计算图操作 x_vals …

文本分类问题不需要ResNet?小夕解析DPCNN设计原理(下)

哎呀呀,说好的不拖稿的又拖了两天T_T,小夕过一阵子分享给你们这两天的开心事哦。后台催稿调参系列的小伙伴们不要急,下一篇就是第二篇调参文啦。好啦,接着上一篇文章,直接搬来DPCNN、ShallowCNN、ResNet的对比图。从图…

注意力机制-深度学习中的注意力机制+注意力机制在自然语言处理中的应用

1 深度学习中的注意力机制 https://mp.weixin.qq.com/s?__bizMzA4Mzc0NjkwNA&mid2650783542&idx1&sn3846652d54d48e315e31b59507e34e9e&chksm87fad601b08d5f17f41b27bb21829ed2c2e511cf2049ba6f5c7244c6e4e1bd7144715faa8f67&mpshare1&scene1&src…

【TensorFlow】常用的损失函数及其TensorFlow实现

1 损失函数 定义:将随机事件或其有关随机变量的取值映射为非负实数以表示该随机事件的“风险”或“损失”的函数。 应用:作为学习准则与优化问题相联系,即通过最小化损失函数求解和评估模型。 分类:回归问题、分类问题 2 回归问…

从经典文本分类模型TextCNN到深度模型DPCNN

如今深度学习已经成为NLP领域的标配技术,在图像中大为成功的卷积神经网络(CNN)也开始广泛渗透到文本分类、机器翻译、机器阅读等NLP任务中。但是,在ACL2017以前,word-level的文本分类模型(以单词为语义单位…

从特征分解到协方差矩阵:详细剖析和实现PCA算法

从特征分解到协方差矩阵:详细剖析和实现PCA算法本文先简要明了地介绍了特征向量和其与矩阵的关系,然后再以其为基础解释协方差矩阵和主成分分析法的基本概念,最后我们结合协方差矩阵和主成分分析法实现数据降维。本文不仅仅是从理论上阐述各种…

NLP中常用文本分类模型汇总

如今深度学习已经成为NLP领域的标配技术,在图像中大为成功的卷积神经网络(CNN)也开始广泛渗透到文本分类、机器翻译、机器阅读等NLP任务中。但是,在ACL2017以前,word-level的文本分类模型(以单词为语义单位…

【TensorFlow】随机训练和批训练的比较与实现

一、随机训练和批训练 随机训练:一次随机抽样训练数据和目标数据对完成训练。批训练:一次大批量训练取平均损失来进行梯度计算,批量训练大小可以一次上扩到整个数据集。批训练和随机训练的差异:优化器方法和收敛的不同批训练的难…

「小公式」平均数与级数

喵喵喵,小夕最近准备复习一下数学和基础算法,所以可能会推送或者附带推送点数学和基础算法的小文章。说不定哪天就用(考)到了呢( ̄∇ ̄)注意哦,与头条位的文章推送不同,「小公式」和「…

最新出炉-阿里 2020届算法工程师-自然语言处理(实习生)以及补充:快递最短路径

问题2感觉跟下面的分苹果类似; 问题 G: 分梨 题目描述 zzq非常喜欢吃梨,有一天他得到了ACMCLUB送给他的一筐梨子。由于他比较仗义,就打算把梨子分给好朋友们吃。现在他要把M个梨子放到N个盘子里面(我们允许有的盘子为空&#xff0…

如何匹配两段文本的语义?

喵喵喵,好久不见啦。首先很抱歉大家期待的调参手册(下)迟迟没有出稿,最近两个月连着赶了4个DDL,整个人都不好了。最近几天终于有时间赶一下未完成的稿子了。在赶DDL的时候夹着写了这篇文章,就先发布这一篇吧…

【TensorFlow】实现简单的鸢尾花分类器

代码实现及说明 # python 3.6 # TensorFlow实现简单的鸢尾花分类器 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasetssess tf.Session()#导入数据 iris datasets.load_iris() # 是否是山鸢尾 0/1 binary_target …

偏差-方差全面解释

偏差(Bias)与方差(Variance) 目录: 为什么会有偏差和方差?偏差、方差、噪声是什么?泛化误差、偏差和方差的关系?用图形解释偏差和方差。偏差、方差窘境。偏差、方差与过拟合、欠拟合…