【Tensorflow】小白入门实战基础篇(下)

import tensorflow as tf
import numpy as npsess = tf.Session()# 一、矩阵运算# div返回的是商的向下取整 数据类型与输入数据类型一致
print(sess.run(tf.div(3,4)))
# truediv在除法前强制转换整数为浮点数
print(sess.run(tf.truediv(3,4)))
# 对浮点数进行整数除法,可以使用floordiv()函数。
# 注意,此函数也返回浮点数结果,但是其会向下舍去小数位到最近的整数
print(sess.run(tf.floordiv(3.0,4.0)))
# 另外一个重要的函数是mod()(取模)。此函数返回除法的余数
print(sess.run(tf.mod(22.0,5.0)))
# 通过cross()函数计算两个张量间的点积。
# 记住,点积函数只为三维向量定义,所以cross()函数以两个三维张量作为输入
print(sess.run(tf.cross([1.,0.,0.],[0.,1.,0.])))# 二、实现激励函数
# 激励函数是神经网络引入的非线性部分,并需要知道在什么位置使用激励函数。
# ①如果激励函数的取值范围在0和1之间,比如sigmoid激励函数,
# 那计算图输出结果也只能在0到1之间取值。
# ②如果激励函数隐藏在节点之间,
# 就要意识到激励函数作用于传入的张量的影响。
# ③如果张量要缩放为均值为0,
# 就需要使用激励函数使得尽可能多的变量在0附近。
# 这暗示我们选用(tanh)函数或者softsign函数。# 1. 整流线性单元ReLU=max(0,x)连续但不平滑
print(sess.run(tf.nn.relu([-3.,3.,10.])))
# [ 0.  3. 10.]# 2. ReLU6=min(max(0,x),6)用来抵消ReLU的线性增长的部分
# hard-sigmod函数的变种,运行速度快,解决梯度消失
print(sess.run(tf.nn.relu6([-3.,3,10])))
# [0. 3. 6.]# 3. sigmod=1/1+(exp(-x))∈[-1,1]是最常用的连续平滑的激励函数也被成为逻辑函数
# 由于在机器学习训练过程中反向传播项趋近于0,因此不怎么使用
print(sess.run(tf.nn.sigmoid([-1.,0.,1.])))
#[0.26894143 0.5        0.7310586 ]# 4. tanh=((exp(x)-exp(-x))/(exp(x)+exp(-x))双曲正切函数∈[0,1]曲线类似于sigmoid
print(sess.run(tf.nn.tanh([-1.,0.,1.])))# 5. softsign=x/(abs(x)+1) 是符号函数的连续估计(-1,1)
print(sess.run(tf.nn.softsign([-1.,0.,-1.])))# 6. softplus激励函数是ReLU激励函数的平滑版(0,∞)
# 表达式为:log(exp(x)+1)
print(sess.run(tf.nn.softplus([-1.,0.,-1.])))
# 当输入增加时,softplus激励函数趋近于∞,softsign函数趋近于1;
# 当输入减小时,softplus激励函数趋近于0,softsign函数趋近于-1。# 7. ELU激励函数与softplus激励函数相似
# 不同点在于:当输入无限小时,ELU激励函数趋近于-1,而softplus激励函数趋近于0
# 表达式为(exp(x)+1) if x<0 else x
print(sess.run(tf.nn.elu([-1.,0.,-1.])))# 三、读取数据源# 1.鸢尾花数据集
from sklearn import datasets
iris = datasets.load_iris() # 鸢尾花数据集
print(len(iris.data)) # 150 特征
print(len(iris.target)) # 150 标签
print(iris.data[0]) # [5.1 3.5 1.4 0.2]
print(set(iris.target)) # {0, 1, 2}# 2.出生体重数据
birth_url = 'https://www.umass.edu/statdata/statdata/data/lowbwt.dat'# 3.波士顿房价
house_url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data'
house_header = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV0']# 4. MNIST手写字体库 要科学上网才能访问
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
# print(len(mnist.test.images))
# print(len(mnist.train.images))
# print(len(mnist.validation.images))
# print(mnist.train.labels[1,:])# 5. 电影数据集
file_url ='http://www.cs.cornell.edu/people/pabo/movie-review-data/'
# 6. 垃圾短信
message_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'
# 7. 莎士比亚文本数据集
text_url = 'http://gutenberg.org/cache/epub/100/pg100.txt'
# 8. 翻译样本集
sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481118.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文本分类问题不需要ResNet?小夕解析DPCNN设计原理(上)

历史回顾回顾一下图像和文本的发展史&#xff0c;似乎这就是一场你追我赶的游戏。在上一阶段的斗争中&#xff0c;朴素贝叶斯、最大熵、条件随机场这些理论完备的统计机器学习模型使得文本分类、中文分词、NER等诸多自然语言处理问题取得了差强人意&#xff08;释义&#xff1a…

【Tensorflow】TensorFlow的嵌入layer和多层layer

计算图中的操作 # python 3.6 import tensorflow as tf import numpy as npsess tf.Session()# 将张量和占位符对象组成一个计算图&#xff0c;创建一个简单的分类器# 一、计算图中的操作 # 1. 声明张量和占位符&#xff0c;创建numpy数组&#xff0c;传入计算图操作 x_vals …

匈牙利算法-指派问题、二分图问题等

维基百科&#xff1a;匈牙利算法 https://zh.wikipedia.org/wiki/匈牙利算法

文本分类问题不需要ResNet?小夕解析DPCNN设计原理(下)

哎呀呀&#xff0c;说好的不拖稿的又拖了两天T_T&#xff0c;小夕过一阵子分享给你们这两天的开心事哦。后台催稿调参系列的小伙伴们不要急&#xff0c;下一篇就是第二篇调参文啦。好啦&#xff0c;接着上一篇文章&#xff0c;直接搬来DPCNN、ShallowCNN、ResNet的对比图。从图…

注意力机制-深度学习中的注意力机制+注意力机制在自然语言处理中的应用

1 深度学习中的注意力机制 https://mp.weixin.qq.com/s?__bizMzA4Mzc0NjkwNA&mid2650783542&idx1&sn3846652d54d48e315e31b59507e34e9e&chksm87fad601b08d5f17f41b27bb21829ed2c2e511cf2049ba6f5c7244c6e4e1bd7144715faa8f67&mpshare1&scene1&src…

【Tensorflow】ValueError: Only call `sigmoid_cross_entropy_with_logits` with named arguments

报错信息 ValueError: Only call sigmoid_cross_entropy_with_logits with named arguments (labels…, logits…, …) 解决方法 在方法内加上labels…, logits…, 报错代码 my_vals tf.nn.sigmoid_cross_entropy_with_logits(my_logits,my_targets)更正后 my_vals tf.nn…

【TensorFlow】常用的损失函数及其TensorFlow实现

1 损失函数 定义&#xff1a;将随机事件或其有关随机变量的取值映射为非负实数以表示该随机事件的“风险”或“损失”的函数。 应用&#xff1a;作为学习准则与优化问题相联系&#xff0c;即通过最小化损失函数求解和评估模型。 分类&#xff1a;回归问题、分类问题 2 回归问…

从经典文本分类模型TextCNN到深度模型DPCNN

如今深度学习已经成为NLP领域的标配技术&#xff0c;在图像中大为成功的卷积神经网络&#xff08;CNN&#xff09;也开始广泛渗透到文本分类、机器翻译、机器阅读等NLP任务中。但是&#xff0c;在ACL2017以前&#xff0c;word-level的文本分类模型&#xff08;以单词为语义单位…

从特征分解到协方差矩阵:详细剖析和实现PCA算法

从特征分解到协方差矩阵&#xff1a;详细剖析和实现PCA算法本文先简要明了地介绍了特征向量和其与矩阵的关系&#xff0c;然后再以其为基础解释协方差矩阵和主成分分析法的基本概念&#xff0c;最后我们结合协方差矩阵和主成分分析法实现数据降维。本文不仅仅是从理论上阐述各种…

【TensorFlow】通过两个简单的例子实现反向传播

回归算法示例 # python 3.6 # TensorFlow实现反向传播 import tensorflow as tf import numpy as npsess tf.Session()# 一、回归算法 # 从均值为1、标准差为0.1的正态分布中抽样随机数&#xff0c; # 然后乘以变量A&#xff0c;损失函数为L2正则损失函数。 # 理论上&#xf…

NLP中常用文本分类模型汇总

如今深度学习已经成为NLP领域的标配技术&#xff0c;在图像中大为成功的卷积神经网络&#xff08;CNN&#xff09;也开始广泛渗透到文本分类、机器翻译、机器阅读等NLP任务中。但是&#xff0c;在ACL2017以前&#xff0c;word-level的文本分类模型&#xff08;以单词为语义单位…

【TensorFlow】随机训练和批训练的比较与实现

一、随机训练和批训练 随机训练&#xff1a;一次随机抽样训练数据和目标数据对完成训练。批训练&#xff1a;一次大批量训练取平均损失来进行梯度计算&#xff0c;批量训练大小可以一次上扩到整个数据集。批训练和随机训练的差异&#xff1a;优化器方法和收敛的不同批训练的难…

「小公式」平均数与级数

喵喵喵&#xff0c;小夕最近准备复习一下数学和基础算法&#xff0c;所以可能会推送或者附带推送点数学和基础算法的小文章。说不定哪天就用&#xff08;考&#xff09;到了呢(&#xffe3;∇&#xffe3;)注意哦&#xff0c;与头条位的文章推送不同&#xff0c;「小公式」和「…

最新出炉-阿里 2020届算法工程师-自然语言处理(实习生)以及补充:快递最短路径

问题2感觉跟下面的分苹果类似&#xff1b; 问题 G: 分梨 题目描述 zzq非常喜欢吃梨&#xff0c;有一天他得到了ACMCLUB送给他的一筐梨子。由于他比较仗义&#xff0c;就打算把梨子分给好朋友们吃。现在他要把M个梨子放到N个盘子里面&#xff08;我们允许有的盘子为空&#xff0…

如何匹配两段文本的语义?

喵喵喵&#xff0c;好久不见啦。首先很抱歉大家期待的调参手册&#xff08;下&#xff09;迟迟没有出稿&#xff0c;最近两个月连着赶了4个DDL&#xff0c;整个人都不好了。最近几天终于有时间赶一下未完成的稿子了。在赶DDL的时候夹着写了这篇文章&#xff0c;就先发布这一篇吧…

【TensorFlow】实现简单的鸢尾花分类器

代码实现及说明 # python 3.6 # TensorFlow实现简单的鸢尾花分类器 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasetssess tf.Session()#导入数据 iris datasets.load_iris() # 是否是山鸢尾 0/1 binary_target …

偏差-方差全面解释

偏差&#xff08;Bias&#xff09;与方差&#xff08;Variance&#xff09; 目录&#xff1a; 为什么会有偏差和方差&#xff1f;偏差、方差、噪声是什么&#xff1f;泛化误差、偏差和方差的关系&#xff1f;用图形解释偏差和方差。偏差、方差窘境。偏差、方差与过拟合、欠拟合…

「小算法」回文数与数值合法性检验

喵喵喵&#xff0c;小夕最近准备复习一下数学和基础算法&#xff0c;尽量每篇推送下面会附带点数学和基础算法的小文章。说不定哪天就用&#xff08;考&#xff09;到了呢(&#xffe3;∇&#xffe3;)注意哦&#xff0c;与头条位的文章推送不同&#xff0c;「小公式」和「小算…

【TensorFlow】实现、训练并评估简单的回归模型和分类模型

1 回归模型 回归算法模型用来预测连续数值型&#xff0c;其目标不是分类值而是数字。为了评估这些回归预测值是否与实际目标相符&#xff0c;我们需要度量两者间的距离&#xff0c;打印训练过程中的损失&#xff0c;最终评估模型损失。 这里使用的例子是从均值为1、标准差为0…