【TensorFlow】实现简单的鸢尾花分类器

代码实现及说明

# python 3.6
# TensorFlow实现简单的鸢尾花分类器
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
from sklearn import datasetssess = tf.Session()#导入数据
iris = datasets.load_iris()
# 是否是山鸢尾 0/1
binary_target = np.array([1. if x == 0 else 0. forx in iris.target])
# 选择两个特征:花瓣长度和宽度
iris_2d = np.array([[x[2],x[3]] for x in iris.data])# 声明批训练大小、占位符和变量
# tf.float32降低float字节数 可以提高算法性能
batch_size = 20
x1_data = tf.placeholder(shape=[None,1],dtype=tf.float32)
x2_data = tf.placeholder(shape=[None,1],dtype=tf.float32)
y_target = tf.placeholder(shape=[None,1],dtype=tf.float32)
# 声明变量 A 和 b (0 = x1 - A*x2 + b)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))# 定义线性模型
# 线性模型的表达式为:x1=x2*A+b。
# 如果找到的数据点在直线以上,则将数据点代入x1-x2*A-b计算出的结果大于0;
# 同理找到的数据点在直线以下,则将数据点代入x1-x2*A-b计算出的结果小于0。
# 将公式x1-x2*A-b传入sigmoid函数,然后预测结果1或者0
# TensorFlow有内建的sigmoid损失函数,所以这里仅仅需要定义模型输出
my_mult = tf.matmul(x2_data, A)
my_add = tf.add(my_mult, b)
my_output = tf.subtract(x1_data,my_add)# 增加分类损失函数 这里用两类交叉熵损失函数 cross entropy
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output,labels=y_target)# 声明优化器
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)# 初始化变量
init = tf.global_variables_initializer()
sess.run(init)# 循环
for i in range(1000):rand_index = np.random.choice(len(iris_2d),size=batch_size)rand_x = iris_2d[rand_index]rand_x1 = np.array([[x[0]] for x in rand_x])rand_x2 = np.array([[x[1]] for x in rand_x])rand_y = np.array([[y] for y in binary_target[rand_index]])sess.run(train_step, feed_dict={x1_data:rand_x1,x2_data:rand_x2,y_target:rand_y})if (i+1)%200 == 0:print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ', b = ' + str(sess.run(b)))# 结果可视化
[[slope]] = sess.run(A) # 斜率
# 因为A的shape是(1,1)所以要写成一行一列的形式
[[intercept]] = sess.run(b) # 截距# 创建拟合线
x = np.linspace(0, 3, num=50) # 0~3 50个均匀间隔的数字
ablineValues = []
for i in x:ablineValues.append(slope*i+intercept)# 绘图
setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==1]
setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==1]
non_setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==0]
non_setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==0]
plt.plot(setosa_x, setosa_y, 'rx', ms=10, mew=2, label='setosa')
plt.plot(non_setosa_x, non_setosa_y, 'ro', label='Non-setosa')
plt.plot(x, ablineValues, 'b-')
plt.xlim([0.0, 2.7])
plt.ylim([0.0, 7.1])
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(loc='lower right')
plt.show()

绘图结果

绘图结果

总结

这里利用花瓣长度和花瓣宽度的特征在山鸢尾与其他物种间拟合一条直线,然后通过该直线来分割两类目标(山鸢尾和非山鸢尾),直线是迭代1000次得到的线性分割,通过直线分割两个目标并不是最好的模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481101.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

偏差-方差全面解释

偏差(Bias)与方差(Variance) 目录: 为什么会有偏差和方差?偏差、方差、噪声是什么?泛化误差、偏差和方差的关系?用图形解释偏差和方差。偏差、方差窘境。偏差、方差与过拟合、欠拟合…

「小算法」回文数与数值合法性检验

喵喵喵,小夕最近准备复习一下数学和基础算法,尽量每篇推送下面会附带点数学和基础算法的小文章。说不定哪天就用(考)到了呢( ̄∇ ̄)注意哦,与头条位的文章推送不同,「小公式」和「小算…

【TensorFlow】实现、训练并评估简单的回归模型和分类模型

1 回归模型 回归算法模型用来预测连续数值型,其目标不是分类值而是数字。为了评估这些回归预测值是否与实际目标相符,我们需要度量两者间的距离,打印训练过程中的损失,最终评估模型损失。 这里使用的例子是从均值为1、标准差为0…

关于”算法工程师/机器学习工程师”的笔试和面试总结

从16年九月份开始,参加了一些公司的算法工程师/机器学习工程师岗位的校园招聘,做一些总结,希望可以给大家准备这个职位提供些信息。 一、需要的基本技能 数据结构知识掌握一门编程语言,c/c/Java/Python 机器学习常用算法或者某一…

史上最通熟易懂的检索式聊天机器人讲解

喵喵喵,一不小心又匿了三个月,突然诈尸害不害怕( ̄∇ ̄) 小夕从7月份开始收到第一场面试邀请,到9月初基本结束了校招(面够了面够了T_T),深深的意识到今年的对话系统/chatbot方向是真的…

【LeetCode】3月16日打卡-Day1

题1 字符串压缩 描述 字符串压缩。利用字符重复出现的次数,编写一种方法,实现基本的字符串压缩功能。比如,字符串aabcccccaaa会变为a2b1c5a3。若“压缩”后的字符串没有变短,则返回原先的字符串。你可以假设字符串中只包含大小写…

Python pandas数据分析中常用方法

官方教程 读取写入文件 官方IO 读取 写入 read_csv       to_csv read_excel      to_excel read_hdf       to_hdf read_sql       to_sql read_json      to_json read_msgpack (experimental)   to_msgpack (experimental) read_html    …

【LeetCode】3月17日打卡-Day2

题1 拼写单词 描述 给你一份『词汇表』(字符串数组) words 和一张『字母表』(字符串) chars。 假如你可以用 chars 中的『字母』(字符)拼写出 words 中的某个『单词』(字符串)&…

小哥哥,检索式chatbot了解一下?

喵喵喵,一不小心又匿了三个月,突然诈尸害不害怕( ̄∇ ̄) 小夕从7月份开始收到第一场面试邀请,到9月初基本结束了校招(面够了面够了T_T),深深的意识到今年的对话系统/chatbot方向是真的…

多重共线性、异方差和自相关性

https://www.jianshu.com/p/1e5389ca9829

【LeetCode】3月18日打卡-Day3

题1 无重复字符的最长子串 描述 给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。 示例 2: 输入: “bbbbb” 输出: 1 解释: 因为无重复…

别求面经了!小夕手把手教你如何斩下和选择NLP算法岗offer!(2020.4.14更新)...

推完上一篇文章,订阅号和知乎后台有好多小伙伴跟小夕要面经(还有个要买简历的是什么鬼),然鹅小夕真的没有整理面经呀,真的木有时间(。 ́︿ ̀。)。不过话说回来,面经有多大用呢&#…

机器学习算法优缺点改进总结

https://wenku.baidu.com/view/5df50157f121dd36a22d82bf.html

领域应用 | 中医临床术语系统

本文转载自公众号中医药知识组织与标准。什么是中医药术语系统?它是干什么用的呢?中医药术语系统是运用计算机与信息技术等工具,对中医药学各领域中的事物、现象、特性、关系和过程进行标记和概括,并为每个概念赋予指称形成概念体…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Image图片组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Image图片组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Image组件 Image 用来加载并显示图片的基础组件,它支持从内存、本…

【LeetCode】3月19日打卡-Day4

题1 最长回文串 描述 给定一个包含大写字母和小写字母的字符串,找到通过这些字母构造成的最长的回文串。 在构造过程中,请注意区分大小写。比如 “Aa” 不能当做一个回文字符串。 注意: 假设字符串的长度不会超过 1010。 示例 1: 输入: “abccccdd” 输…

别求面经了!小夕手把手教你如何斩下和选择NLP算法岗offer!(19.11.21更新)

推完上一篇文章,订阅号和知乎后台有好多小伙伴跟小夕要面经(还有个要买简历的是什么鬼),然鹅小夕真的没有整理面经呀,真的木有时间(。 ́︿ ̀。)。不过话说回来,面经有多大用呢&#…

git - 简易指南

http://www.bootcss.com/p/git-guide/

梁家卿 | 百科知识图谱同步更新

本文转载自公众号知识工场。 本文整理自复旦大学知识工场梁家卿博士在IJCAI 2017 会议上的论文报告,题目为《How to Keep a Knowledge Base Synchronized with Its Encyclopedia Source》,作者包括:梁家卿博士(复旦大学&#xff0…

【LeetCode】3月20日打卡-Day5

题1 最小的k个数 描述 输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。 示例 1: 输入:arr [3,2,1], k 2 输出:[1,2] 或者 [2,1] 示…