视频问答兴起,多跳问答热度衰退,92篇论文看智能问答的发展趋势

星标/置顶小屋,带你解锁

最萌最前沿的NLP、搜索与推荐技术

文 | 舒意恒(南京大学硕士生,知识图谱方向)

编 |  北大小才女小轶


2019年的时候,舒意恒Y.Shu整理了一份《2019年,智能问答有哪些研究方向?》,如今2020年已经过去了一半,该领域的研究趋势发生了一些有趣的变化。于是Y.Shu继续为大家整理了今年ACL、AAAI、IJCAI、SIGIR、CVPR、ICML、KDD等顶级会议上智能问答方向的92篇论文,进行了分方向梳理,并为大家打包了这92篇的论文PDF挂在订阅号后台方便大家下载。

在智能问答涉及的各个小方向上,视觉/视频问答、对话、问题生成等主题成为最热门的研究方向。不同于关于 2019 年 QA 研究的统计,多跳问答在今年上半年似乎没有持续的热度。

在订阅号 「夕小瑶的卖萌屋」 后台回复关键词【0713】,即可下载92篇论文pdf合集。

基准测试

  • AAAI 2020|Getting Closer to AI Complete Question Answering: A Set of Prerequisite Real Tasks 新的阅读理解数据集,包含基于文本的世界知识和无法回答的问题

  • ACL 2020|What Question Answering can Learn from Trivia Nerds 问答系统能从冷知识书呆子那儿学到啥?

常识问答

  • AAAI 2020|Graph-Based Reasoning over Heterogeneous External Knowledge for Commonsense Question Answering

  • AAAI 2020|PIQA: Reasoning about Physical Commonsense in Natural Language

  • ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning 常识推理数据集

社区问答

  • AAAI 2020|Attentive User-Engaged Adversarial Neural Network for Community Question Answering

  • AAAI 2020|Joint Learning of Answer Selection and Answer Summary Generation in Community Question Answering

文档级问答

  • ACL 2020|Probabilistic Assumptions Matter: Improved Models for Distantly-Supervised Document-Level Question Answering

  • ACL 2020|RikiNet: Reading Wikipedia Pages for Natural Question Answering 长文档阅读

片段选择

  • ACL 2020|Transformers to Learn Hierarchical Contexts in Multiparty Dialogue for Span-based Question Answering

  • ACL 2020|Span Selection Pre-training for Question Answering

  • ACL 2020|CorefQA: Coreference Resolution as Query-based Span Prediction 基于片段预测的共指消解

开放域问答

  • ACL 2020|Contextualized Sparse Representations for Real-Time Open-Domain Question Answering

  • ACL 2020|Dense Passage Retrieval for Open-Domain Question Answering

  • ACL 2020|Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index

知识库问答与多跳问答

  • ACL 2020|Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings 利用知识图谱嵌入的多跳问答模型,获得 SOTA

  • ACL 2020|Unsupervised Alignment-based Iterative Evidence Retrieval for Multi-hop Question Answering 多跳问答的迭代解释检索

  • ACL 2020|Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases 知识库问答的多跳复杂问题查询图生成

  • AAAI 2020|Skeleton-based Semantic Parsing for Complex Questions over Knowledge Bases

高效的问答系统

  • ACL 2020|DeFormer: Decomposing Pre-trained Transformers for Faster Question Answering 问题和文段分别编码

  • ACL 2020|Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index

对话

  • AAAI 2020|Improving Knowledge-Aware Dialogue Generation via Knowledge Base Question Answering

  • AAAI 2020|An Empirical Study of Content Understanding in Conversational Question Answering

  • SIGIR 2020|Open-Retrieval Conversational Question Answering

  • ACL 2020|Fluent Response Generation for Conversational Question Answering

  • ACL 2020|Do not let the history haunt you: Mitigating Compounding Errors in Conversational Question Answering

  • ACL 2020|Learning to Identify Follow-Up Questions in Conversational Question Answering

  • ACL 2020|DoQA - Accessing Domain-Specific FAQs via Conversational QA

视觉问答

包括针对图像、视频的问答。

  • IJCAI 2020|Mucko: Multi-Layer Cross-Modal Knowledge Reasoning for Fact-based Visual Question Answering

  • ICML 2020|Probing Emergent Semantics in Predictive Agents via Question Answering

  • IEEE TGRS|RSVQA: Visual Question Answering for Remote Sensing Data

  • CVPR 2020|Counterfactual Samples Synthesizing for Robust Visual Question Answering

  • AAAI 2020 workshop|A Study on Multimodal and Interactive Explanations for Visual Question Answering

  • CVPR 2020 oral|Hierarchical Conditional Relation Networks for Video Question Answering

  • CVPR 2020|On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering

  • IEEE SEMANTIC COMPUTING|Augmenting Visual Question Answering with Semantic Frame Information in a Multitask Learning Approach

  • AAAI 2020|Re-Attention for Visual Question Answering

  • AAAI 2020|Divide and Conquer: Question-Guided Spatio-Temporal Contextual Attention for Video Question Answering

  • AAAI 2020|Segment-then-Rank: Non-factoid Question Answering on Instructional Videos

  • AAAI 2020|Location-aware Graph Convolutional Networks for Video Question Answering

  • AAAI 2020|Multi-Question Learning for Visual Question Answering

  • AAAI 2020|Reasoning with Heterogeneous Graph Alignment for Video Question Answering

  • AAAI 2020|Unified Vision-Language Pre-Training for Image Captioning and VQA

  • AAAI 2020|KnowIT VQA: Answering Knowledge-Based Questions about Videos

  • AAAI 2020|Overcoming Language Priors in VQA via Decomposed Linguistic Representations

  • AAAI 2020|Explanation vs Attention: A Two-Player Game to Obtain Attention for VQA

  • ACL 2020|Aligned Dual Channel Graph Convolutional Network for Visual Question Answering

  • ACL 2020|Multimodal Neural Graph Memory Networks for Visual Question Answering

  • ACL 2020|TVQA+: Spatio-Temporal Grounding for Video Question Answering

  • ACL 2020|Dense-Caption Matching and Frame-Selection Gating for Temporal Localization in VideoQA

  • ACL 2020|A negative case analysis of visual grounding methods for VQA

问题生成

  • ACL 2020 workshop|A Question Type Driven and Copy Loss Enhanced Frameworkfor Answer-Agnostic Neural Question Generation

  • ACL 2020|Generating Diverse and Consistent QA pairs from Contexts with Information-Maximizing Hierarchical Conditional VAEs

  • ACL 2020|On the Importance of Diversity in Question Generation for QA

  • AAAI 2020|Improving Question Generation with Sentence-level Semantic Matching and Answer Position Inferring

  • AAAI 2020|Conclusion-Supplement Answer Generation for Non-Factoid Questions

  • AAAI 2020|Visual Dialogue State Tracking for Question Generation

  • AAAI 2020|Neural Question Generation with Answer Pivot

  • AAAI 2020|Capturing Greater Context for Question Generation

数据集

值得注意的是,以下一些文章未发现正式发表在会议/期刊上。

  • RuBQ: A Russian Dataset for Question Answering over Wikidata 俄语问答数据集

  • ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning 常识推理数据集

  • Event-QA: A Dataset for Event-Centric Question Answering over Knowledge Graphs

  • HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data

  • FQuAD: French Question Answering Dataset

  • AAAI 2020|JEC-QA: A Legal-Domain Question Answering Dataset

  • AAAI 2020|QASC: A Dataset for Question Answering via Sentence Composition

  • ACL 2020|The TechQA Dataset 包含技术论坛上的实际问题的数据集

  • ACL 2020|Controlled Crowdsourcing for High-Quality QA-SRL Annotation 其中 SRL 指语义角色标签

  • AAAI 2020|How to Ask Better Questions? A Large-Scale Multi-Domain Dataset for Rewriting Ill-Formed Questions

表格问答

  • AAAI 2020|CFGNN: Cross Flow Graph Neural Networks for Question Answering on Complex Tables

  • HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data

无监督 QA

  • ACL 2020|Harvesting and Refining Question-Answer Pairs for Unsupervised QA

  • ACL 2020|Template-Based Question Generation from Retrieved Sentences for Improved Unsupervised Question Answering

  • Facebook|Unsupervised Question Decomposition for Question Answering

垂直领域问答

  • ACL 2020 workshop|Entity-Enriched Neural Models for Clinical Question Answering

  • ACL 2020|Talk to Papers: Bringing Neural Question Answering to Academic Search

  • IEEE TMI|A Question-Centric Model for Visual Question Answering in Medical Imaging

  • ACL 2020|Clinical Reading Comprehension: A Thorough Analysis of the emrQA Dataset

  • AAAI 2020|On the Generation of Medical Question-Answer Pairs

  • AAAI 2020|Iteratively Questioning and Answering for Interpretable Legal Judgment Prediction

对问答系统的评估/利用问答评估

  • ACL 2020|MultiReQA: A Cross-Domain Evaluation for Retrieval Question Answering Models

  • ACL 2020|FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization

  • ACL 2020|Asking and Answering Questions to Evaluate the Factual Consistency of Summaries

  • ACL 2020|MLQA: Evaluating Cross-lingual Extractive Question Answering

问答系统的解释

  • ACL 2020|Unsupervised Alignment-based Iterative Evidence Retrieval for Multi-hop Question Answering 多跳问答的迭代解释检索

其他

  • ACL 2020|Selective Question Answering under Domain Shift

  • KDD 2020|Mining Implicit Relevance Feedback from User Behavior for Web Question Answering

  • ACL 2020|Logic-Guided Data Augmentation and Regularization for Consistent Question Answering

  • AAAI 2020|Knowledge and Cross-Pair Pattern Guided Semantic Matching for Question Answering

  • AAAI 2020|ManyModalQA: Modality Disambiguation and QA over Diverse Inputs 多模态 QA

  • ACL 2020|A Methodology for Creating Question Answering Corpora Using Inverse Data Annotation

  • ACL 2020|Multi-source Meta Transfer for Low Resource Multiple-Choice Question Answering

好啦,只能帮大家到这里了。

在订阅号 「夕小瑶的卖萌屋」 后台回复关键词【0713】,即可下载92篇论文pdf合集。


喜欢本文的小伙伴,强烈建议加入卖萌屋的智能问答垂类讨论群,不仅可以认识众多志同道合的优秀小伙伴,而且还有若干卖萌屋美丽小姐姐(划掉)、顶会审稿人、大厂研究员、知乎大V等你来撩哦。

如果提示已满或过期,或希望加入领域大群(自然语言处理、搜索技术、推荐系统、算法岗求职等)或其他垂类讨论群,请在后台回复关键词【入群】获取入口哦。

记得扫描下方二维码关注并星标置顶,我才能来到你面前哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480248.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文浅尝 | 知识图谱相关实体搜索

本文转载自公众号:南大Websoft。相关搜索(Relevance Search)是信息检索中的一个经典问题,相关搜索是指给定一个查询实体,返回与其相关度最高的实体(一个类似的问题Similarity Search,一般来说指…

最新美团Java面试题目(共3面)

一面 线程池用过哪些,线程池有哪些参数,然后问我几个常用线程池的用法和实际场景问题。 集合框架的知识,hashmap,ArrayList,LinkedList源码相关知识,基本整个介绍了一遍,与hastable&#xff0c…

PersonGraphDataSet近十万的开放人物关系图谱项目

PersonGraphDataSet PersonGraphDataSet, nearly 10 thousand person2person relationship facts that build from extraction method, which can be applied to person kg search and inference applications。 人物图谱数据集,近十万的人物关系图谱事实数据库&am…

图Graph--寻找二度好友(BFS应用)

社交网络可以用图来表示(查阅图的概念)。 寻找二度好友,这个问题就非常适合用图的广度优先搜索BFS算法来解决,因为广度优先搜索是层层往外推进的。 首先,遍历与起始顶点最近的一层顶点,也就是用户的一度好…

技术动态 | TechKG:一个面向中文学术领域的大型知识图谱

作者:东北大学-知识图谱研究组 任飞亮TechKG 是一个面向中文、面向学术、多领域的大型知识图谱知识库,知识库由“东北大学-知识图谱研究组”开发完成。和已有知识图谱如 Freebase 或 YAGO 相比,TechKG 具有如下主要特点:1、是一个…

技术总结:图算法、开源工具及其在工业界的应用场景概述

知识图谱本质上是一种图结构,在图内部数据规模大且质量高、外部算力足够的情况下,充分利用好图算法,能够最大程度地发挥出其数据价值。实际上,图(Graph)是一个常见的数据结构,现实世界中有很多很…

SIGIR2020 | 淘宝提出结合知识图谱与大规模推荐的新框架ATBRG

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术文 | 江城编 | 夕小瑶今天分享一篇淘宝发表在 SIGIR2020 上的关于知识图谱应用于大规模推荐的论文《ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation》&#xff0c…

图Graph--农夫过河问题(BFS/DFS应用)

农夫过河问题: /*** description: 农夫过河问题(羊,白菜,狼),一次最多带一个东西过河,* 农夫不在的情况下羊会吃白菜,狼会吃羊,如何平安过河* author…

机器学习之「二分类算法」-----银行营销案例分析

原文地址&#xff1a; <di&#xff1a;https://blog.csdn.net/weixin_44696674/article/details/88231922iv id“article_content” class“article_content clearfix” data-track-view"{“mod”:“popu_307”,“con”:",https://blog.csdn.net/weixin_44696674/…

论文浅尝 | 直译优于翻译?混合语言的知识库问答方法研究

动机作者思考&#xff0c;如果一个人懂多个语言&#xff0c;那么只要他知道某一语言的某个事实&#xff0c;就能以它作为另一语言问题的答案&#xff0c;同时希望证明计算机是否也能做到这一点&#xff0c;并完成混合语言的简单问题知识问答任务&#xff08;Code-Mix Simple Qu…

2018最新Java面试78题:数据结构+网络+NoSQL+分布式架构

算法和数据结构 数组、链表、二叉树、队列、栈的各种操作&#xff08;性能&#xff0c;场景&#xff09; 二分查找和各种变种的二分查找 各类排序算法以及复杂度分析&#xff08;快排、归并、堆&#xff09; 各类算法题&#xff08;手写&#xff09; 理解并可以分析时间和空…

工程实践:基于规则模式的军事和医药领域知识图谱问答快速实现

知识结构化问答是知识图谱的一个重要的应用方向&#xff0c;虽然现在许多真实的使用体验上&#xff0c;会被评价为“鸡肋且智障”&#xff0c;并且在落地上还没有太多的付费场景&#xff0c;但也不乏有不少学生、公司、机构在尝试花时间去做这个事情。当前&#xff0c;医疗知识…

图Graph--最小生成树

文章目录1.概念2.构造最小生成树Prim算法3.构造最小生成树Kruskal算法1.概念 对图运用不同的遍历方法就可能得到图的不同遍历顺序&#xff0c;每一种遍历顺序对应于一棵生成树对于无向连通图&#xff0c;所有的生成树中必有一棵树的所有边的权的总和最小的&#xff0c;称之为最…

Longformer:超越RoBERTa,为长文档而生的预训练模型

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术文 | ChrisCao, 小轶前言今天要与大家分享的是AllenAI今年发表的最新工作&#xff0c;Longformer——一种可高效处理长文本的升级版Transformer。作者团队提供了开源代码&#xff0c;大家可快速复现&#xff…

工程实践:基于规则句法的事件关系与主谓宾三元组抽取项目实现

目前&#xff0c;知识图谱在学术界如火如荼地进行&#xff0c;但受限于知识图谱各个环节中的性能问题&#xff0c;还尚未能够在工业界大规模运用。而与知识图谱中以实体为知识节点&#xff0c;实体关系为实体关系边对知识进行组织不同&#xff0c;以事件作为节点&#xff0c;事…

论文浅尝 | LightRNN:存储和计算高效的 RNN

链接&#xff1a;https://arxiv.org/pdf/1610.09893.pdf动机在NLP任务中使用RNN已经被证明是很有用的模型方法。但是传统的RNN在NLP中的应用有一个很大的限制&#xff1a;RNN的输出输入Embedding占用的空间太大&#xff0c;比如1024维10M词表大小的Embedding矩阵就要占掉40GB&a…

阿里最全Java面试100题汇总:涵盖天猫、蚂蚁金服等面试题!含答案~

【阿里天猫、蚂蚁、钉钉面试题目】 1、微信红包怎么实现。 2、海量数据分析。 3、测试职位问的线程安全和非线程安全。 4、HTTP2.0、thrift。 5、面试电话沟通可能先让自我介绍。 6、分布式事务一致性。 7、nio的底层实现。 8、jvm基础是必问的&#xff0c;jvm GC原理&a…

ACL2020 奇葩论文标题大赏

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术文 | 灵魂写手rumor酱编 | 不拖更的夕小瑶又是一年一度的ACL&#xff0c;之前通过卖萌屋Arxiv服务已经零零碎碎看了一些&#xff0c;还是准备刷一下论文list&#xff0c;看看哪篇能让我的模型效果一飞冲天。…

字符串匹配算法(BF RK)

文章目录1. BF&#xff08;Brute Force&#xff09;暴力匹配BF代码2. RK&#xff08;Rabin-Karp&#xff09;算法RK代码3. 思考题&#xff1a;&#xff08;二维匹配&#xff09;1. BF&#xff08;Brute Force&#xff09;暴力匹配 BF算法的思想&#xff0c;在主串中&#xff0…

用Python寻找最优投资组合

原文地址&#xff1a;https://www.jianshu.com/p/2a25dfd465e9 现代投资组合理论&#xff08;Modern Portfolio Theory&#xff0c;MPT&#xff09;告诉我们投资者应该分散投资来实现最小化风险最大化投资回报。大邓刚开始学习这方面知识&#xff0c;用了将近一天的时候才搞懂M…