商汤科技2020数据分析师0820笔试题目整理

2019年8月19日
问答题1:缺失值数据预处理有哪些方法?https://juejin.im/post/5b5c4e6c6fb9a04f90791e0c
处理缺失值的方法如下:删除记录,数据填补和不处理。主要以数据填补为主。
在这里插入图片描述
1 删除记录:该种方法在样本数据量十分大且确实值不多的情况下非常有效。
2 数据填补:插补大体有替换缺失值,拟合缺失值,虚拟变量等操作。替换是通过数据中非缺失数据的相似性来填补,其中的核心思想是发现相同群体的共同特征,拟合是通过其他特征建模来填补,虚拟变量是衍生的新变量代替缺失值。
替换缺失值:
1 定类数据:众数填补
2定量(定比)数据: 平均数或中位数填补
3 热卡填补: 热卡填充法是在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。
4 k最近距离邻法(k-means cluster)
通过无监督机器学习的k均值聚类的方法将所有样本进行聚类划分,然后在通过划分的种类的均值对各自类中的缺失值进行填补。本质是通过找相似来填补缺失值。
拟合缺失值
如果缺失的变量跟其他特征变量相关,则通过建模预测的缺失值就有意义,反之则不用
回归预测:
基于完整的数据集,建立回归方程。对于有缺失值的特征值,将已知的特征值代入模型来估计未知特征值,一次估计值来进行填充。(该方法适合缺失值是连续的,即定量的类型,才可以使用回归来预测。)
极大似然估计:
在随机类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计。(该方法适合大样本)
多重插补:
多重插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的额噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。
根据数据缺失机制、模式以及变量类型,可分别采用回归、预测均数匹配( predictive mean matching, PMM )、趋势得分( propensity score, PS )、Logistic回归、判别分析以及马尔可夫链蒙特卡罗( Markov Chain Monte Carlo, MCMC) 等不同的方法进行填补。
注:使用多重插补要求数据缺失值为随机性缺失,一般重复次数20-50次精准度很高,但是计算也很复杂,需要大量计算。
随机森林:
虚拟变量
虚拟变量其实就是缺失值的一种衍生变量,。具体做法是通过判断特征值是否有缺失值来定义一个新的二分类变量。
不处理
在希望保持原始信息不发生变化的前提下对信息系统进行处理

问答题2中心极限定理是什么?他的应用方向是:
中心极限定理就是研究随机变量和的极限分布在什么条件下为正态分布的问题。
(1)独立同分布的中心极限定理[林德伯格-列维(Lindburg-Levy)定理]
应用一:求随机变量之和Sn落在某区间的概率。
应用二:已知随机变量之和Sn取值的概率,求随机变量的个数n。
(2)棣莫佛-拉普拉斯(de Movire - Laplace)定理
应用一:近似计算服从二项分布的随机变量在某范围内取值的概率
应用二:已知服从二项分布的随机变量在某范围内取值的概率,估计该范围(或该范围的最大值)。
应用三:与用频率估计概率有关的二项分布的近似计算
(3)李雅普诺夫定理
问答题3:
在这里插入图片描述
1 对于外层职工关系 A 中的每一个记录,都要对内层职工关系B进行检索,所有效率不高
2.(1)使用临时表
SELECT MAX(月工资) as 最高工资,部门号 INTO temp FROM 职工
GROUP BY 部门号;
SELECT 职工号 FROM 职工,temp WHERE 月工资=最高工资
AND 职工.部门号 = temp.部门号;
(2) SELECT 职工号 FROM 职工,(SELECT MAX(月工资) as 最高工资,部门号 FROM 职工 GROUP BY 部门号) as DEPMAX

WHERE 月工资=最高工资 AND 职工.部门号 = DEPMAX. 部门号;
SQL经典5道
https://cloud.tencent.com/developer/article/1062773
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述v
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480095.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java多线程系列(八):ConcurrentHashMap的实现原理(JDK1.7和JDK1.8)

HashMap、CurrentHashMap 的实现原理基本都是BAT面试必考内容,阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制深入谈过hashmap的实现原理以及在JDK 1.8的实现区别,今天主要谈CurrentHashMap的实现原理,以及在JDK1.7和…

论文笔记(Neural Graph Collaborative Filtering)

神经图协同过滤 论文链接:Neural Graph Collaborative Filtering, SIGIR’19 原理:在 user-item interaction graph 上使用 GNN 来学习 user 向量和item 向量,用户向量和项向量的内积来预测评分。 区别: 大部分论文使用 GNN 只是…

论文浅尝 | 基于知识库的自然语言理解 02#

本文转载自公众号:知识工场。罗康琦,上海交通大学计算机系2019届博士,研究方向为自然语义理解和知识图谱。2012年获得华中科技大学软件工程学士学位,现就职于京东数据科学实验室(Data Science Lab)。他曾在…

工业解密:百度地图背后的路线时长预估模型!

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术编 | YY无论你是苦逼学生(公交地铁狗)、职场萌新(打车狗)还是有钱大佬(有车一族),只要站在了北上广深的土地上,就…

动态规划应用--“杨辉三角”最短路径 LeetCode 120

文章目录1. 问题描述2. DP算法代码3. LeetCode 120 三角形最小路径和1. 问题描述 对“杨辉三角"进行一些改造。每个位置的数字可以随意填写,经过某个数字只能到达下面一层相邻的两个数字。 假设你站在第一层,往下移动,我们把移动到最底…

Java多线程系列(九):CountDownLatch、Semaphore等4大并发工具类详解

之前谈过高并发编程系列:4种常用Java线程锁的特点,性能比较、使用场景 ,以及高并发编程系列:ConcurrentHashMap的实现原理(JDK1.7和JDK1.8) 今天主要介绍concurrent包的内容以及4大并发工具类。 Java并发工具包 1.并发工具类 …

快手 算法工程师 0825 笔试题

4 求解一元一次方程的解 #include <cstdio> #include <iostream> #include <string.h> #include <cstring> #include <algorithm> using namespace std; int x0,n0,xr0,nr0; int flag 0; void Adds(string a,char op) { if(flag0) {if(a…

论文笔记(Neural Collaborative Filtering)

神经协同过滤 论文链接&#xff1a;Neural Collaborative Filtering, WWW’17 原理&#xff1a;融合 GMF 和 MLP 1. 摘要 虽然最近的一些研究使用深度学习作为推荐&#xff0c;但他们主要是用深度学习来建模辅助信息&#xff0c;例如 item 的文本描述。在表示协同过滤的关键…

玩转算法第七章-二叉树与递归

二叉树与递归 二叉树的前序遍历 leetcode 104 将两个递归函数映射到max函数中去 思考题&#xff1a;leetcode 111 leetcode&#xff1a;226 扩展题&#xff1a;leetcode 100 leetcode&#xff1a;101 第一个是&#xff0c;第二个不是 leetcode 222&#xff1a; leet…

POJ 2965 开冰箱的门(回溯)

文章目录1. 题目1.1 题目链接1.2 题目大意1.3 解题思路2. 代码2.1 Accepted代码1. 题目 1.1 题目链接 http://poj.org/problem?id2965 1.2 题目大意 有一个4*4的符号矩阵&#xff08;和-&#xff09;&#xff0c;改变一个元素的符号&#xff0c;它所在的行和列的其他元素也…

论文浅尝 | 基于知识库的自然语言理解 03#

本文转载自公众号: 知识工场。罗康琦&#xff0c;上海交通大学计算机系2019届博士&#xff0c;研究方向为自然语义理解和知识图谱。2012年获得华中科技大学软件工程学士学位&#xff0c;现就职于京东数据科学实验室&#xff08;Data Science Lab&#xff09;。他曾在AAAI&#…

Java多线程系列(七):并发容器的原理,7大并发容器详解、及使用场景

之前谈过高并发编程系列&#xff1a; 高并发编程系列&#xff1a;4种常用Java线程锁的特点&#xff0c;性能比较、使用场景 高并发编程系列&#xff1a;CountDownLatch、Semaphore等4大并发工具类详解 高并发编程系列&#xff1a;4大JVM性能分析工具详解&#xff0c;及内存…

MSRA提出通用文档预训练模型LayoutLM,通往文档智能之路!

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术随着数字化进程的加快&#xff0c;文档、图像等载体的结构化分析和内容提取成为关乎企业数字化转型成败的关键一环&#xff0c;自动、精准、快速的信息处理对于生产力的提升至关重要。以商业文档为例&#xf…

tensorflow--GPU

一、查看 tensorflow 是否使用了GPU进行计算 import tensorflow as tf sess tf.Session(configtf.ConfigProto(log_device_placementTrue)) 运行程序&#xff0c;日志若包含 gpu 信息&#xff0c;则使用了 gpu。 二、使用指定GPU 方式一&#xff1a;代码&#xff1a; imp…

玩转算法之面试 第八章-递归与回溯

树形问题 leetcode&#xff1a;17 1 字符串的合法性 &#xff08;是否包括1&#xff0c;*和#号键&#xff09; 2 空字符串 3 多个解的顺序 部分源代码如下&#xff1a; 在这里插入代码片 #include<cstring>using namespace std;private:const string letterMap[1…

动态规划理论学习

文章目录1. 理论总结1.1 “一个模型”1.2 “三个特征”1.2.1 最优子结构1.2.2 无后效性1.2.3 重复子问题2. 实例剖析2.1 问题描述2.2 两种DP解题思路2.2.1 状态转移表2.2.2 状态转移方程3. 四种算法思想比较1. 理论总结 动态规划理论总结为“一个模型、三个特征”。 1.1 “一…

Java多线程系列(四):4种常用Java线程锁的特点,性能比较、使用场景

多线程的缘由 在出现了进程之后&#xff0c;操作系统的性能得到了大大的提升。虽然进程的出现解决了操作系统的并发问题&#xff0c;但是人们仍然不满足&#xff0c;人们逐渐对实时性有了要求。 使用多线程的理由之一是和进程相比&#xff0c;它是一种非常花销小&#xff0c;切…

论文浅尝 | Global Relation Embedding for Relation Extraction

链接&#xff1a;https://arxiv.org/abs/1704.05958Introduction在关系抽取任务中&#xff0c;通常采用远程监督的方式自动生成数据集。由于实体对间可能存在多关系&#xff0c;生成的数据集往往存在大量噪音。本文对文本中的关系表述&#xff08;textual relation&#xff09;…

tensorflow--模型的保存和提取

参考&#xff1a; TensorFlow&#xff1a;保存和提取模型 最全Tensorflow模型保存和提取的方法——附实例 模型的保存会覆盖&#xff0c;后一次保存的模型会覆盖上一次保存的模型。最多保存近5次结果。应当保存效果最优时候的模型&#xff0c;而不是训练最后一次的模型。所以…

推荐模型是怎样由窄变宽、越变越深的?

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术文 | 邢智皓编 | 兔子酱当前&#xff0c;深度学习推荐模型已经成功应用于推荐、广告、搜索等领域&#xff0c;但在了解它之前&#xff0c;简单回顾传统推荐模型仍是有必要的&#xff0c;原因如下&#xff1a;…