论文笔记(Neural Collaborative Filtering)

神经协同过滤

论文链接:Neural Collaborative Filtering, WWW’17
原理:融合 GMF 和 MLP

1. 摘要

虽然最近的一些研究使用深度学习作为推荐,但他们主要是用深度学习来建模辅助信息,例如 item 的文本描述。在表示协同过滤的关键因素——用户和项目特征之间的交互时,仍然使用矩阵分解等用内积来建模。
通过用一种能从数据中学习任意函数的神经结构代替内积,提出了一种通用的神经网络协同过滤框架 NCF。为了使非线性的 NCF 模型更加完善,我们提出利用 MLP 来学习用户-项目交互函数

关于Matrix Factorization
将用户和项映射到同一潜在空间,用用户向量和项向量的内积来评估他们之间的交互。
但当潜在空间的维度 K 小的时候会存在一些限制,而扩大 K 的话会有损模型的泛化能力。

2. 模型

2.1 GMF(Generalized Matrix Factorization )

我们称之为GMF(Generalized Matrix Factorization,广义矩阵分解)
PTVUu 表示用户的潜在向量 pu ,QTVIi表示项目的潜在向量 qi,定义第一层神经CF层的映射函数为:
在这里插入图片描述
然后,将向量映射到输出层:
在这里插入图片描述

2.2 MLP (Multi-Layer Perceptron)

用MLP(多层感知机)来学习用户和项目潜在特征之间的相互作用。MLP模型定义为:
在这里插入图片描述
采用塔层结构,每一层比上一层的单元数减少一半。

2.3 Fusion of GMF and MLP

GMF:应用了一个线性内核来模拟潜在的特征交互
MLP:使用非线性内核从数据中学习交互函数
在这里插入图片描述
为了使得融合模型具有更大的灵活性,允许GMF和MLP学习独立的嵌入,并结合两种模型通过连接他们最后的隐层输出。图中展示了方案,公式如下:
在这里插入图片描述
该模型结合MF的线性度和DNNs的非线性度,用以建模用户-项目之间的潜在结构。我们将这一模式称为“NeuMF”,简称神经矩阵分解(Neural Matrix Factorization)。

2.4 Pre-training

由于NeuMF的目标函数的非凸性,基于梯度的优化方法只能找到局部最优解。由于 NeuMF 是 GMF 和 MLP 的组合,我们建议使用 GMF 和 MLP 的预训练模型来初始化NeuMF。
我们首先训练随机初始化的 GMF 和 MLP 直到模型收敛。然后,我们用它们的模型参数初始化 NeuMF 相应部分的参数。唯一的调整是在输出层,在那里我们将两者用权重连接起来:
在这里插入图片描述
对于从头开始训练的 GMF 和 MLP ,我们采用自适应矩估计(Adam,Adaptive Moment Estimation),它通过对不频繁的参数进行频繁和更大幅度的更新来适应每个参数的学习速率。Adam方法在两种模型上的收敛速度都比普通SGD快,并缓解了调整学习率的痛苦。在将预先训练的参数输入NeuMF之后,我们用普通SGD而不是Adam进行优化。 这是因为Adam需要保存更新参数的动量信息(momentum information)。因为我们用预先训练的模型参数初始化NeuMF,并且放弃保存动量信息,不适合用基于动量的方法进一步优化NeuMF。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480087.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

玩转算法第七章-二叉树与递归

二叉树与递归 二叉树的前序遍历 leetcode 104 将两个递归函数映射到max函数中去 思考题:leetcode 111 leetcode:226 扩展题:leetcode 100 leetcode:101 第一个是,第二个不是 leetcode 222: leet…

POJ 2965 开冰箱的门(回溯)

文章目录1. 题目1.1 题目链接1.2 题目大意1.3 解题思路2. 代码2.1 Accepted代码1. 题目 1.1 题目链接 http://poj.org/problem?id2965 1.2 题目大意 有一个4*4的符号矩阵(和-),改变一个元素的符号,它所在的行和列的其他元素也…

论文浅尝 | 基于知识库的自然语言理解 03#

本文转载自公众号: 知识工场。罗康琦,上海交通大学计算机系2019届博士,研究方向为自然语义理解和知识图谱。2012年获得华中科技大学软件工程学士学位,现就职于京东数据科学实验室(Data Science Lab)。他曾在AAAI&#…

Java多线程系列(七):并发容器的原理,7大并发容器详解、及使用场景

之前谈过高并发编程系列: 高并发编程系列:4种常用Java线程锁的特点,性能比较、使用场景 高并发编程系列:CountDownLatch、Semaphore等4大并发工具类详解 高并发编程系列:4大JVM性能分析工具详解,及内存…

MSRA提出通用文档预训练模型LayoutLM,通往文档智能之路!

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术随着数字化进程的加快,文档、图像等载体的结构化分析和内容提取成为关乎企业数字化转型成败的关键一环,自动、精准、快速的信息处理对于生产力的提升至关重要。以商业文档为例&#xf…

tensorflow--GPU

一、查看 tensorflow 是否使用了GPU进行计算 import tensorflow as tf sess tf.Session(configtf.ConfigProto(log_device_placementTrue)) 运行程序,日志若包含 gpu 信息,则使用了 gpu。 二、使用指定GPU 方式一:代码: imp…

玩转算法之面试 第八章-递归与回溯

树形问题 leetcode&#xff1a;17 1 字符串的合法性 &#xff08;是否包括1&#xff0c;*和#号键&#xff09; 2 空字符串 3 多个解的顺序 部分源代码如下&#xff1a; 在这里插入代码片 #include<cstring>using namespace std;private:const string letterMap[1…

动态规划理论学习

文章目录1. 理论总结1.1 “一个模型”1.2 “三个特征”1.2.1 最优子结构1.2.2 无后效性1.2.3 重复子问题2. 实例剖析2.1 问题描述2.2 两种DP解题思路2.2.1 状态转移表2.2.2 状态转移方程3. 四种算法思想比较1. 理论总结 动态规划理论总结为“一个模型、三个特征”。 1.1 “一…

Java多线程系列(四):4种常用Java线程锁的特点,性能比较、使用场景

多线程的缘由 在出现了进程之后&#xff0c;操作系统的性能得到了大大的提升。虽然进程的出现解决了操作系统的并发问题&#xff0c;但是人们仍然不满足&#xff0c;人们逐渐对实时性有了要求。 使用多线程的理由之一是和进程相比&#xff0c;它是一种非常花销小&#xff0c;切…

论文浅尝 | Global Relation Embedding for Relation Extraction

链接&#xff1a;https://arxiv.org/abs/1704.05958Introduction在关系抽取任务中&#xff0c;通常采用远程监督的方式自动生成数据集。由于实体对间可能存在多关系&#xff0c;生成的数据集往往存在大量噪音。本文对文本中的关系表述&#xff08;textual relation&#xff09;…

tensorflow--模型的保存和提取

参考&#xff1a; TensorFlow&#xff1a;保存和提取模型 最全Tensorflow模型保存和提取的方法——附实例 模型的保存会覆盖&#xff0c;后一次保存的模型会覆盖上一次保存的模型。最多保存近5次结果。应当保存效果最优时候的模型&#xff0c;而不是训练最后一次的模型。所以…

推荐模型是怎样由窄变宽、越变越深的?

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术文 | 邢智皓编 | 兔子酱当前&#xff0c;深度学习推荐模型已经成功应用于推荐、广告、搜索等领域&#xff0c;但在了解它之前&#xff0c;简单回顾传统推荐模型仍是有必要的&#xff0c;原因如下&#xff1a;…

动态规划应用--找零钱

文章目录1. 问题描述2. 问题分析2.1 回溯法求解2.2 DP状态转移方程法2.3 DP状态转移表法1. 问题描述 找零问题&#xff0c;在贪心算法讲过。但是贪心不一定能得出最优解。假设有几种不同币值的硬币v1&#xff0c;v2&#xff0c;.……vn&#xff08;单位是元&#xff09;。如果…

玩转算法之面试第九章-动态规划

动态规划&#xff1a; 9-12 斐波那契数列 对重复计算&#xff0c;进行优化&#xff0c;进行记忆化搜索 假设基本的问题已经被解决&#xff0c;依次内推。 动态规划&#xff1a;将原问题拆解成若干个子问题&#xff0c;同时保存子问题的答案&#xff0c;使得每个子问题只求…

领域应用 | 从本体论开始说起——运营商关系图谱的构建及应用

本文转载自公众号&#xff1a;中国联通大数据。联通大数据技术专家闫龙将从“本体论”说起&#xff0c;为大家介绍联通大数据关系图谱的构建与应用。一&#xff0e;本体论万维网之父Tim Berners-Lee教授在1998年将语义网络&#xff08;Semantic web&#xff09;带入人类的视线。…

史上最强多线程面试44题和答案:线程锁+线程池+线程同步等

最全BAT必考题答案系列 最全MySQL面试60题和答案 史上最全Spring面试71题与答案 史上最全Redis面试49题&#xff08;含答案&#xff09;:哨兵复制事务集群持久化等 分布式缓存RedisMemcached经典面试题和答案 最全Java锁详解&#xff1a;独享锁/共享锁公平锁/非公平锁乐观锁…

部门直推!百度大搜索招聘NLP、搜索方向算法工程师!

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术工作职责负责百度搜索排序相关性&#xff08;Relevance&#xff09;策略。 职位要求-了解主流机器学习算法。 -优秀的分析问题和解决问题的能力&#xff0c;对解决具有挑战性问题充满激情。 -C/C语言编程&…

POJ 1276 ATM凑钱(动态规划)(未解答)

文章目录1. 题目1.1 题目链接1.2 题目大意1.3 解题思路2. 代码2.1 Accepted代码1. 题目 1.1 题目链接 http://poj.org/problem?id1276 1.2 题目大意 需要凑的钱最多100000&#xff0c;面额最多10种&#xff0c;每种张数最多1000&#xff0c;面额最大不超过1000 1.3 解题思…

论文浅尝 | 为基于知识库的问答构建形式查询生成

论文笔记整理&#xff1a;刘晓臻&#xff0c;东南大学计算机科学与工程学院本科生。Citation: H.Zafar, G. Napolitano, and J. Lehmann. Formal query generation for questionanswering overknowledge bases. ESWC, 2018.https://link.springer.com/content/pdf/10.1007%2F97…

Java多线程系列(十一):ReentrantReadWriteLock的实现原理与锁获取详解

我们继续Java多线程与并发系列之旅&#xff0c;之前我们分享了Synchronized 和 ReentrantLock 都是独占锁&#xff0c;即在同一时刻只有一个线程获取到锁。 然而在有些业务场景中&#xff0c;我们大多在读取数据&#xff0c;很少写入数据&#xff0c;这种情况下&#xff0c;如…