tensorflow--GPU

一、查看 tensorflow 是否使用了GPU进行计算

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

运行程序,日志若包含 gpu 信息,则使用了 gpu。

二、使用指定GPU

方式一:代码:

import os
os.environ[‘CUDA_VISIBLE_DEVICES’]=1

方式二、命令行:

CUDA_VISIBLE_DEVICES=’1’ python code.py

这个命令是指定程序用哪个 GPU 跑 tensorflow,不加的话默认都是显卡 0,然后可能就爆了。我们有 n 张显卡,可以根据需要指定不同的显卡跑程序的

三、设置GPU使用比例
tf 默认一个程序会占用一整个gpu,在程序里手动设置GPU使用比例这样可以一个GPU可以跑多个程序

config = tf.ConfigProto() 
config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存 
session = tf.Session(config=config)

三、GPU内存分配

session_conf = tf.ConfigProto()
session_conf.gpu_options.allow_growth = True  # 设置allow_grouth,根据运行时的需要来分配GPU内存
sess = tf.Session(config=session_conf)  

四、查看GPU memory的使用情況
在终端输入命令 nvidia-smi
在这里插入图片描述
GPU:GPU 编号;
Name:GPU 型号;
Persistence-M:持续模式的状态。持续模式虽然耗能大,但是在新的GPU应用启动时,花费的时间更少,这里显示的是off的状态;
Fan:风扇转速,从0到100%之间变动;
Temp:温度,单位是摄氏度;
Perf:性能状态,从 P0 到 P12,P0 表示最大性能,P12 表示状态最小性能(即 GPU 未工作时为 P0,达到最大工作限度时为 P12)。
Pwr:Usage/Cap:能耗;
Memory Usage:显存使用率;
Bus-Id:涉及GPU总线的东西,domain🚌device.function;
Disp.A:Display Active,表示GPU的显示是否初始化;
Volatile GPU-Util:浮动的GPU利用率;
Uncorr. ECC:Error Correcting Code,错误检查与纠正;
Compute M:compute mode,计算模式。
Processes 表示每个进程对 GPU 的显存使用率。

输入命令 top 查看动态可用内存?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480081.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

玩转算法之面试 第八章-递归与回溯

树形问题 leetcode&#xff1a;17 1 字符串的合法性 &#xff08;是否包括1&#xff0c;*和#号键&#xff09; 2 空字符串 3 多个解的顺序 部分源代码如下&#xff1a; 在这里插入代码片 #include<cstring>using namespace std;private:const string letterMap[1…

动态规划理论学习

文章目录1. 理论总结1.1 “一个模型”1.2 “三个特征”1.2.1 最优子结构1.2.2 无后效性1.2.3 重复子问题2. 实例剖析2.1 问题描述2.2 两种DP解题思路2.2.1 状态转移表2.2.2 状态转移方程3. 四种算法思想比较1. 理论总结 动态规划理论总结为“一个模型、三个特征”。 1.1 “一…

Java多线程系列(四):4种常用Java线程锁的特点,性能比较、使用场景

多线程的缘由 在出现了进程之后&#xff0c;操作系统的性能得到了大大的提升。虽然进程的出现解决了操作系统的并发问题&#xff0c;但是人们仍然不满足&#xff0c;人们逐渐对实时性有了要求。 使用多线程的理由之一是和进程相比&#xff0c;它是一种非常花销小&#xff0c;切…

论文浅尝 | Global Relation Embedding for Relation Extraction

链接&#xff1a;https://arxiv.org/abs/1704.05958Introduction在关系抽取任务中&#xff0c;通常采用远程监督的方式自动生成数据集。由于实体对间可能存在多关系&#xff0c;生成的数据集往往存在大量噪音。本文对文本中的关系表述&#xff08;textual relation&#xff09;…

tensorflow--模型的保存和提取

参考&#xff1a; TensorFlow&#xff1a;保存和提取模型 最全Tensorflow模型保存和提取的方法——附实例 模型的保存会覆盖&#xff0c;后一次保存的模型会覆盖上一次保存的模型。最多保存近5次结果。应当保存效果最优时候的模型&#xff0c;而不是训练最后一次的模型。所以…

推荐模型是怎样由窄变宽、越变越深的?

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术文 | 邢智皓编 | 兔子酱当前&#xff0c;深度学习推荐模型已经成功应用于推荐、广告、搜索等领域&#xff0c;但在了解它之前&#xff0c;简单回顾传统推荐模型仍是有必要的&#xff0c;原因如下&#xff1a;…

动态规划应用--找零钱

文章目录1. 问题描述2. 问题分析2.1 回溯法求解2.2 DP状态转移方程法2.3 DP状态转移表法1. 问题描述 找零问题&#xff0c;在贪心算法讲过。但是贪心不一定能得出最优解。假设有几种不同币值的硬币v1&#xff0c;v2&#xff0c;.……vn&#xff08;单位是元&#xff09;。如果…

玩转算法之面试第九章-动态规划

动态规划&#xff1a; 9-12 斐波那契数列 对重复计算&#xff0c;进行优化&#xff0c;进行记忆化搜索 假设基本的问题已经被解决&#xff0c;依次内推。 动态规划&#xff1a;将原问题拆解成若干个子问题&#xff0c;同时保存子问题的答案&#xff0c;使得每个子问题只求…

领域应用 | 从本体论开始说起——运营商关系图谱的构建及应用

本文转载自公众号&#xff1a;中国联通大数据。联通大数据技术专家闫龙将从“本体论”说起&#xff0c;为大家介绍联通大数据关系图谱的构建与应用。一&#xff0e;本体论万维网之父Tim Berners-Lee教授在1998年将语义网络&#xff08;Semantic web&#xff09;带入人类的视线。…

史上最强多线程面试44题和答案:线程锁+线程池+线程同步等

最全BAT必考题答案系列 最全MySQL面试60题和答案 史上最全Spring面试71题与答案 史上最全Redis面试49题&#xff08;含答案&#xff09;:哨兵复制事务集群持久化等 分布式缓存RedisMemcached经典面试题和答案 最全Java锁详解&#xff1a;独享锁/共享锁公平锁/非公平锁乐观锁…

部门直推!百度大搜索招聘NLP、搜索方向算法工程师!

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术工作职责负责百度搜索排序相关性&#xff08;Relevance&#xff09;策略。 职位要求-了解主流机器学习算法。 -优秀的分析问题和解决问题的能力&#xff0c;对解决具有挑战性问题充满激情。 -C/C语言编程&…

POJ 1276 ATM凑钱(动态规划)(未解答)

文章目录1. 题目1.1 题目链接1.2 题目大意1.3 解题思路2. 代码2.1 Accepted代码1. 题目 1.1 题目链接 http://poj.org/problem?id1276 1.2 题目大意 需要凑的钱最多100000&#xff0c;面额最多10种&#xff0c;每种张数最多1000&#xff0c;面额最大不超过1000 1.3 解题思…

论文浅尝 | 为基于知识库的问答构建形式查询生成

论文笔记整理&#xff1a;刘晓臻&#xff0c;东南大学计算机科学与工程学院本科生。Citation: H.Zafar, G. Napolitano, and J. Lehmann. Formal query generation for questionanswering overknowledge bases. ESWC, 2018.https://link.springer.com/content/pdf/10.1007%2F97…

Java多线程系列(十一):ReentrantReadWriteLock的实现原理与锁获取详解

我们继续Java多线程与并发系列之旅&#xff0c;之前我们分享了Synchronized 和 ReentrantLock 都是独占锁&#xff0c;即在同一时刻只有一个线程获取到锁。 然而在有些业务场景中&#xff0c;我们大多在读取数据&#xff0c;很少写入数据&#xff0c;这种情况下&#xff0c;如…

这篇顶会paper,讲述了疫情期间憋疯的你和我

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术编 | 小轶2020年净忙着见证历史了。年初疫情爆发后&#xff0c;大家的生活模式也因为疫情发生了巨变。经历了史上最长假期&#xff0c;躺尸太久&#xff0c;到后来满脑子只想开学/复工。今年KDD会议上有一篇很…

论文浅尝 | Knowledge Vault: 全网规模的知识概率融合方法

论文笔记整理&#xff1a;吴桐桐&#xff0c;东南大学博士生&#xff0c;研究方向为自然语言处理。链接&#xff1a;https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf基于机器学习&#xff0c;Knowledge Vault不仅能够从多个来源&#xff08;文本&#xff0c;表格数据&…

java程序员的必用的9款开发工具

今天推荐java程序员开发利器&#xff0c;包含如如下&#xff1a; 开发环境&#xff1a; Eclipse IntelliJ IDEA IntelliJ在业界被公认为最好的java开发工具之一&#xff0c;尤其在智能代码助手、代码自动提示、重构、J2EE支持、各类版本工具&#xff08;git、svn等&#xff…

动态规划应用--搜索引擎拼写纠错

文章目录1. 字符串相似度1.1 莱文斯坦距离1.2 最长公共子串长度2. 计算编辑距离2.1 莱文斯坦距离2.2 最长公共子串长度3. 搜索引擎拼写纠错4. 练习题在 Trie树那节讲过&#xff0c;利用Trie可以进行关键词提示&#xff0c;节省输入时间。在搜索框中你不小心打错了字&#xff0c…

玩转算法之面试第十章-贪心算法

leetcode 455 分配饼干 尝试将最大的饼干给最贪心的朋友 如果满足&#xff0c;则1 如果不满足&#xff0c;则将最大的饼干给次贪心的朋友&#xff0c;一次类推 试图让最多的小朋友开心 在这里插入代码片 #include<iostream> #include<vector>using namespace …

论文浅尝 | 基于知识库的自然语言理解 04#

本文转载自公众号&#xff1a;知识工场。罗康琦&#xff0c;上海交通大学计算机系2019届博士&#xff0c;研究方向为自然语义理解和知识图谱。2012年获得华中科技大学软件工程学士学位&#xff0c;现就职于京东数据科学实验室&#xff08;Data Science Lab&#xff09;。他曾在…