PyTorch常用代码段合集

文 | Jack Stark@知乎

编 | 极市平台

来源 | https://zhuanlan.zhihu.com/p/104019160


导读

本文是PyTorch常用代码段合集,涵盖基本配置、张量处理、模型定义与操作、数据处理、模型训练与测试等5个方面,还给出了多个值得注意的Tips,内容非常全面。

PyTorch最好的资料是官方文档。本文是PyTorch常用代码段,在参考资料(张皓:PyTorch Cookbook)的基础上做了一些修补,方便使用时查阅。

基本配置

导入包和版本查询

import torch
import torch.nn as nn
import torchvision
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
print(torch.cuda.get_device_name(0))

可复现性

在硬件设备(CPU、GPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。

np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

显卡设置

如果只需要一张显卡

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

如果需要指定多张显卡,比如0,1号显卡。

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

也可以在命令行运行代码时设置显卡:

CUDA_VISIBLE_DEVICES=0,1 python train.py

清除显存

torch.cuda.empty_cache()

也可以使用在命令行重置GPU的指令

nvidia-smi --gpu-reset -i [gpu_id]

张量(Tensor)处理

张量的数据类型

PyTorch有9种CPU张量类型和9种GPU张量类型。

张量基本信息

tensor = torch.randn(3,4,5)
print(tensor.type())  # 数据类型
print(tensor.size())  # 张量的shape,是个元组
print(tensor.dim())   # 维度的数量

命名张量

张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。

# 在PyTorch 1.3之前,需要使用注释
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)# PyTorch 1.3之后
NCHW = [‘N’, ‘C’, ‘H’, ‘W’]
images = torch.randn(32, 3, 56, 56, names=NCHW)
images.sum('C')
images.select('C', index=0)
# 也可以这么设置
tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))
# 使用align_to可以对维度方便地排序
tensor = tensor.align_to('N', 'C', 'H', 'W')

数据类型转换

# 设置默认类型,pytorch中的FloatTensor远远快于DoubleTensor
torch.set_default_tensor_type(torch.FloatTensor)# 类型转换
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()

torch.Tensor与np.ndarray转换

除了CharTensor,其他所有CPU上的张量都支持转换为numpy格式然后再转换回来。

ndarray = tensor.cpu().numpy()
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.

Torch.tensor与PIL.Image转换

# pytorch中的张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],需要进行转置和规范化
# torch.Tensor -> PIL.Image
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way# PIL.Image -> torch.Tensor
path = r'./figure.jpg'
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way

np.ndarray与PIL.Image的转换

image = PIL.Image.fromarray(ndarray.astype(np.uint8))ndarray = np.asarray(PIL.Image.open(path))

从只包含一个元素的张量中提取值

value = torch.rand(1).item()

张量形变

# 在将卷积层输入全连接层的情况下通常需要对张量做形变处理,
# 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。
tensor = torch.rand(2,3,4)
shape = (6, 4)
tensor = torch.reshape(tensor, shape)

打乱顺序

tensor = tensor[torch.randperm(tensor.size(0))]  # 打乱第一个维度

水平翻转

# pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现
# 假设张量的维度为[N, D, H, W].
tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]

复制张量

# Operation                 |  New/Shared memory | Still in computation graph |
tensor.clone()            # |        New         |          Yes               |
tensor.detach()           # |      Shared        |          No                |
tensor.detach.clone()()   # |        New         |          No                |

张量拼接

'''
注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,
而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量,
而torch.stack的结果是3x10x5的张量。
'''
tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)

将整数标签转为one-hot编码

# pytorch的标记默认从0开始
tensor = torch.tensor([0, 2, 1, 3])
N = tensor.size(0)
num_classes = 4
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

得到非零元素

torch.nonzero(tensor)               # index of non-zero elements
torch.nonzero(tensor==0)            # index of zero elements
torch.nonzero(tensor).size(0)       # number of non-zero elements
torch.nonzero(tensor == 0).size(0)  # number of zero elements

判断两个张量相等

torch.allclose(tensor1, tensor2)  # float tensor
torch.equal(tensor1, tensor2)     # int tensor

张量扩展

# Expand tensor of shape 64*512 to shape 64*512*7*7.
tensor = torch.rand(64,512)
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

矩阵乘法

# Matrix multiplcation: (m*n) * (n*p) * -> (m*p).
result = torch.mm(tensor1, tensor2)# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
result = torch.bmm(tensor1, tensor2)# Element-wise multiplication.
result = tensor1 * tensor2

计算两组数据之间的两两欧式距离

利用broadcast机制

dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))

模型定义和操作

一个简单两层卷积网络的示例

# convolutional neural network (2 convolutional layers)
class ConvNet(nn.Module):def __init__(self, num_classes=10):super(ConvNet, self).__init__()self.layer1 = nn.Sequential(nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(16),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.layer2 = nn.Sequential(nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(32),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.fc = nn.Linear(7*7*32, num_classes)def forward(self, x):out = self.layer1(x)out = self.layer2(out)out = out.reshape(out.size(0), -1)out = self.fc(out)return outmodel = ConvNet(num_classes).to(device)

卷积层的计算和展示可以用这个网站辅助。

双线性汇合(bilinear pooling)

X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling
assert X.size() == (N, D, D)
X = torch.reshape(X, (N, D * D))
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization
X = torch.nn.functional.normalize(X)                  # L2 normalization

多卡同步 BN(Batch normalization)

当使用 torch.nn.DataParallel 将代码运行在多张 GPU 卡上时,PyTorch 的 BN 层默认操作是各卡上数据独立地计算均值和标准差,同步 BN 使用所有卡上的数据一起计算 BN 层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)

将已有网络的所有BN层改为同步BN层

def convertBNtoSyncBN(module, process_group=None):'''Recursively replace all BN layers to SyncBN layer.Args:module[torch.nn.Module]. Network'''if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum,module.affine, module.track_running_stats, process_group)sync_bn.running_mean = module.running_meansync_bn.running_var = module.running_varif module.affine:sync_bn.weight = module.weight.clone().detach()sync_bn.bias = module.bias.clone().detach()return sync_bnelse:for name, child_module in module.named_children():setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))return module

类似 BN 滑动平均

如果要实现类似 BN 滑动平均的操作,在 forward 函数中要使用原地(inplace)操作给滑动平均赋值。

class BN(torch.nn.Module)def __init__(self):...self.register_buffer('running_mean', torch.zeros(num_features))def forward(self, X):...self.running_mean += momentum * (current - self.running_mean)

计算模型整体参数量

num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())

查看网络中的参数

可以通过model.state_dict()或者model.named_parameters()函数查看现在的全部可训练参数(包括通过继承得到的父类中的参数)

params = list(model.named_parameters())
(name, param) = params[28]
print(name)
print(param.grad)
print('-------------------------------------------------')
(name2, param2) = params[29]
print(name2)
print(param2.grad)
print('----------------------------------------------------')
(name1, param1) = params[30]
print(name1)
print(param1.grad)

模型可视化(使用pytorchviz)

szagoruyko/pytorchvizgithub.com

类似 Keras 的 model.summary() 输出模型信息,使用pytorch-summary

sksq96/pytorch-summarygithub.com

模型权重初始化

注意 model.modules() 和 model.children() 的区别:model.modules() 会迭代地遍历模型的所有子层,而 model.children() 只会遍历模型下的一层。

# Common practise for initialization.
for layer in model.modules():if isinstance(layer, torch.nn.Conv2d):torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',nonlinearity='relu')if layer.bias is not None:torch.nn.init.constant_(layer.bias, val=0.0)elif isinstance(layer, torch.nn.BatchNorm2d):torch.nn.init.constant_(layer.weight, val=1.0)torch.nn.init.constant_(layer.bias, val=0.0)elif isinstance(layer, torch.nn.Linear):torch.nn.init.xavier_normal_(layer.weight)if layer.bias is not None:torch.nn.init.constant_(layer.bias, val=0.0)# Initialization with given tensor.
layer.weight = torch.nn.Parameter(tensor)

提取模型中的某一层

modules()会返回模型中所有模块的迭代器,它能够访问到最内层,比如self.layer1.conv1这个模块,还有一个与它们相对应的是name_children()属性以及named_modules(),这两个不仅会返回模块的迭代器,还会返回网络层的名字。

# 取模型中的前两层
new_model = nn.Sequential(*list(model.children())[:2]
# 如果希望提取出模型中的所有卷积层,可以像下面这样操作:
for layer in model.named_modules():if isinstance(layer[1],nn.Conv2d):conv_model.add_module(layer[0],layer[1])

部分层使用预训练模型

注意如果保存的模型是 torch.nn.DataParallel,则当前的模型也需要是

model.load_state_dict(torch.load('model.pth'), strict=False)

将在 GPU 保存的模型加载到 CPU

model.load_state_dict(torch.load('model.pth', map_location='cpu'))

导入另一个模型的相同部分到新的模型

模型导入参数时,如果两个模型结构不一致,则直接导入参数会报错。用下面方法可以把另一个模型的相同的部分导入到新的模型中。

# model_new代表新的模型
# model_saved代表其他模型,比如用torch.load导入的已保存的模型
model_new_dict = model_new.state_dict()
model_common_dict = {k:v for k, v in model_saved.items() if k in model_new_dict.keys()}
model_new_dict.update(model_common_dict)
model_new.load_state_dict(model_new_dict)

数据处理

计算数据集的均值和标准差

import os
import cv2
import numpy as np
from torch.utils.data import Dataset
from PIL import Imagedef compute_mean_and_std(dataset):# 输入PyTorch的dataset,输出均值和标准差mean_r = 0mean_g = 0mean_b = 0for img, _ in dataset:img = np.asarray(img) # change PIL Image to numpy arraymean_b += np.mean(img[:, :, 0])mean_g += np.mean(img[:, :, 1])mean_r += np.mean(img[:, :, 2])mean_b /= len(dataset)mean_g /= len(dataset)mean_r /= len(dataset)diff_r = 0diff_g = 0diff_b = 0N = 0for img, _ in dataset:img = np.asarray(img)diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))N += np.prod(img[:, :, 0].shape)std_b = np.sqrt(diff_b / N)std_g = np.sqrt(diff_g / N)std_r = np.sqrt(diff_r / N)mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)return mean, std

得到视频数据基本信息

import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()

TSN 每段(segment)采样一帧视频

K = self._num_segments
if is_train:if num_frames > K:# Random index for each segment.frame_indices = torch.randint(high=num_frames // K, size=(K,), dtype=torch.long)frame_indices += num_frames // K * torch.arange(K)else:frame_indices = torch.randint(high=num_frames, size=(K - num_frames,), dtype=torch.long)frame_indices = torch.sort(torch.cat((torch.arange(num_frames), frame_indices)))[0]
else:if num_frames > K:# Middle index for each segment.frame_indices = num_frames / K // 2frame_indices += num_frames // K * torch.arange(K)else:frame_indices = torch.sort(torch.cat((torch.arange(num_frames), torch.arange(K - num_frames))))[0]
assert frame_indices.size() == (K,)
return [frame_indices[i] for i in range(K)]

常用训练和验证数据预处理

其中 ToTensor 操作会将 PIL.Image 或形状为 H×W×D,数值范围为 [0, 255] 的 np.ndarray 转换为形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor。

train_transform = torchvision.transforms.Compose([torchvision.transforms.RandomResizedCrop(size=224,scale=(0.08, 1.0)),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225)),])val_transform = torchvision.transforms.Compose([torchvision.transforms.Resize(256),torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225)),
])

模型训练和测试

分类模型训练代码

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):for i ,(images, labels) in enumerate(train_loader):images = images.to(device)labels = labels.to(device)# Forward passoutputs = model(images)loss = criterion(outputs, labels)# Backward and optimizeroptimizer.zero_grad()loss.backward()optimizer.step()if (i+1) % 100 == 0:print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

分类模型测试代码

# Test the model
model.eval()  # eval mode(batch norm uses moving mean/variance#instead of mini-batch mean/variance)
with torch.no_grad():correct = 0total = 0for images, labels in test_loader:images = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Test accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

自定义loss

继承torch.nn.Module类写自己的loss。

class MyLoss(torch.nn.Moudle):def __init__(self):super(MyLoss, self).__init__()def forward(self, x, y):loss = torch.mean((x - y) ** 2)return loss

标签平滑(label smoothing)

写一个label_smoothing.py的文件,然后在训练代码里引用,用LSR代替交叉熵损失即可。label_smoothing.py内容如下:

import torch
import torch.nn as nnclass LSR(nn.Module):def __init__(self, e=0.1, reduction='mean'):super().__init__()self.log_softmax = nn.LogSoftmax(dim=1)self.e = eself.reduction = reductiondef _one_hot(self, labels, classes, value=1):"""Convert labels to one hot vectorsArgs:labels: torch tensor in format [label1, label2, label3, ...]classes: int, number of classesvalue: label value in one hot vector, default to 1Returns:return one hot format labels in shape [batchsize, classes]"""one_hot = torch.zeros(labels.size(0), classes)#labels and value_added  size must matchlabels = labels.view(labels.size(0), -1)value_added = torch.Tensor(labels.size(0), 1).fill_(value)value_added = value_added.to(labels.device)one_hot = one_hot.to(labels.device)one_hot.scatter_add_(1, labels, value_added)return one_hotdef _smooth_label(self, target, length, smooth_factor):"""convert targets to one-hot format, and smooththem.Args:target: target in form with [label1, label2, label_batchsize]length: length of one-hot format(number of classes)smooth_factor: smooth factor for label smoothReturns:smoothed labels in one hot format"""one_hot = self._one_hot(target, length, value=1 - smooth_factor)one_hot += smooth_factor / (length - 1)return one_hot.to(target.device)def forward(self, x, target):if x.size(0) != target.size(0):raise ValueError('Expected input batchsize ({}) to match target batch_size({})'.format(x.size(0), target.size(0)))if x.dim() < 2:raise ValueError('Expected input tensor to have least 2 dimensions(got {})'.format(x.size(0)))if x.dim() != 2:raise ValueError('Only 2 dimension tensor are implemented, (got {})'.format(x.size()))smoothed_target = self._smooth_label(target, x.size(1), self.e)x = self.log_softmax(x)loss = torch.sum(- x * smoothed_target, dim=1)if self.reduction == 'none':return losselif self.reduction == 'sum':return torch.sum(loss)elif self.reduction == 'mean':return torch.mean(loss)else:raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')

或者直接在训练文件里做label smoothing

for images, labels in train_loader:images, labels = images.cuda(), labels.cuda()N = labels.size(0)# C is the number of classes.smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)score = model(images)log_prob = torch.nn.functional.log_softmax(score, dim=1)loss = -torch.sum(log_prob * smoothed_labels) / Noptimizer.zero_grad()loss.backward()optimizer.step()

Mixup训练

beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:images, labels = images.cuda(), labels.cuda()# Mixup images and labels.lambda_ = beta_distribution.sample([]).item()index = torch.randperm(images.size(0)).cuda()mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]label_a, label_b = labels, labels[index]# Mixup loss.scores = model(mixed_images)loss = (lambda_ * loss_function(scores, label_a)+ (1 - lambda_) * loss_function(scores, label_b))optimizer.zero_grad()loss.backward()optimizer.step()

L1 正则化

l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ...  # Standard cross-entropy loss
for param in model.parameters():loss += torch.sum(torch.abs(param))
loss.backward()

不对偏置项进行权重衰减(weight decay)

pytorch里的weight decay相当于l2正则

bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0},{'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

梯度裁剪(gradient clipping)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

得到当前学习率

# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:all_lr.append(param_group['lr'])

另一种方法,在一个batch训练代码里,当前的lr是optimizer.param_groups[0]['lr']

学习率衰减

# Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):train(...)val(...)scheduler.step(val_acc)# Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
# Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):scheduler.step()train(...)val(...)# Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):scheduler.step()train(...)val(...)

优化器链式更新

从1.4版本开始,torch.optim.lr_scheduler 支持链式更新(chaining),即用户可以定义两个 schedulers,并交替在训练中使用。

import torch
from torch.optim import SGD
from torch.optim.lr_scheduler import ExponentialLR, StepLR
model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler1 = ExponentialLR(optimizer, gamma=0.9)
scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)
for epoch in range(4):print(epoch, scheduler2.get_last_lr()[0])optimizer.step()scheduler1.step()scheduler2.step()

模型训练可视化

PyTorch可以使用tensorboard来可视化训练过程。安装和运行TensorBoard。

pip install tensorboard
tensorboard --logdir=runs

使用SummaryWriter类来收集和可视化相应的数据,放了方便查看,可以使用不同的文件夹,比如'Loss/train'和'Loss/test'。

from torch.utils.tensorboard import SummaryWriter
import numpy as npwriter = SummaryWriter()for n_iter in range(100):writer.add_scalar('Loss/train', np.random.random(), n_iter)writer.add_scalar('Loss/test', np.random.random(), n_iter)writer.add_scalar('Accuracy/train', np.random.random(), n_iter)writer.add_scalar('Accuracy/test', np.random.random(), n_iter)

保存与加载断点

注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。

start_epoch = 0
# Load checkpoint.
if resume: # resume为参数,第一次训练时设为0,中断再训练时设为1model_path = os.path.join('model', 'best_checkpoint.pth.tar')assert os.path.isfile(model_path)checkpoint = torch.load(model_path)best_acc = checkpoint['best_acc']start_epoch = checkpoint['epoch']model.load_state_dict(checkpoint['model'])optimizer.load_state_dict(checkpoint['optimizer'])print('Load checkpoint at epoch {}.'.format(start_epoch))print('Best accuracy so far {}.'.format(best_acc))# Train the model
for epoch in range(start_epoch, num_epochs):...# Test the model...# save checkpointis_best = current_acc > best_accbest_acc = max(current_acc, best_acc)checkpoint = {'best_acc': best_acc,'epoch': epoch + 1,'model': model.state_dict(),'optimizer': optimizer.state_dict(),}model_path = os.path.join('model', 'checkpoint.pth.tar')best_model_path = os.path.join('model', 'best_checkpoint.pth.tar')torch.save(checkpoint, model_path)if is_best:shutil.copy(model_path, best_model_path)

提取 ImageNet 预训练模型某层的卷积特征

# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
# VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(list(model.named_children())[:-1]))with torch.no_grad():model.eval()conv_representation = model(image)

提取 ImageNet 预训练模型多层的卷积特征

class FeatureExtractor(torch.nn.Module):"""Helper class to extract several convolution features from the givenpre-trained model.Attributes:_model, torch.nn.Module._layers_to_extract, list<str> or set<str>Example:>>> model = torchvision.models.resnet152(pretrained=True)>>> model = torch.nn.Sequential(collections.OrderedDict(list(model.named_children())[:-1]))>>> conv_representation = FeatureExtractor(pretrained_model=model,layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)"""def __init__(self, pretrained_model, layers_to_extract):torch.nn.Module.__init__(self)self._model = pretrained_modelself._model.eval()self._layers_to_extract = set(layers_to_extract)def forward(self, x):with torch.no_grad():conv_representation = []for name, layer in self._model.named_children():x = layer(x)if name in self._layers_to_extract:conv_representation.append(x)return conv_representation

微调全连接层

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():param.requires_grad = False
model.fc = nn.Linear(512, 100)  # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)

以较大学习率微调全连接层,较小学习率微调卷积层

model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'params': conv_parameters, 'lr': 1e-3},{'params': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

其他注意事项

不要使用太大的线性层。因为nn.Linear(m,n)使用的是的内存,线性层太大很容易超出现有显存。

不要在太长的序列上使用RNN。因为RNN反向传播使用的是BPTT算法,其需要的内存和输入序列的长度呈线性关系。

model(x) 前用 model.train() 和 model.eval() 切换网络状态。

不需要计算梯度的代码块用 with torch.no_grad() 包含起来。

model.eval() 和 torch.no_grad() 的区别在于,model.eval() 是将网络切换为测试状态,例如 BN 和dropout在训练和测试阶段使用不同的计算方法。torch.no_grad() 是关闭 PyTorch 张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行 loss.backward()。

model.zero_grad()会把整个模型的参数的梯度都归零, 而optimizer.zero_grad()只会把传入其中的参数的梯度归零.

torch.nn.CrossEntropyLoss 的输入不需要经过 Softmax。torch.nn.CrossEntropyLoss等价于 torch.nn.functional.log_softmax + torch.nn.NLLLoss。

loss.backward() 前用 optimizer.zero_grad() 清除累积梯度。

torch.utils.data.DataLoader 中尽量设置 pin_memory=True,对特别小的数据集如 MNIST 设置 pin_memory=False 反而更快一些。num_workers 的设置需要在实验中找到最快的取值。

用 del 及时删除不用的中间变量,节约 GPU 存储。

使用 inplace 操作可节约 GPU 存储,如

x = torch.nn.functional.relu(x, inplace=True)

减少 CPU 和 GPU 之间的数据传输。例如如果你想知道一个 epoch 中每个 mini-batch 的 loss 和准确率,先将它们累积在 GPU 中等一个 epoch 结束之后一起传输回 CPU 会比每个 mini-batch 都进行一次 GPU 到 CPU 的传输更快。

使用半精度浮点数 half() 会有一定的速度提升,具体效率依赖于 GPU 型号。需要小心数值精度过低带来的稳定性问题。

时常使用 assert tensor.size() == (N, D, H, W) 作为调试手段,确保张量维度和你设想中一致。

除了标记 y 外,尽量少使用一维张量,使用 n*1 的二维张量代替,可以避免一些意想不到的一维张量计算结果。

统计代码各部分耗时

with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:    ...print(profile)# 或者在命令行运行python -m torch.utils.bottleneck main.py

使用TorchSnooper来调试PyTorch代码,程序在执行的时候,就会自动 print 出来每一行的执行结果的 tensor 的形状、数据类型、设备、是否需要梯度的信息。

# pip install torchsnooperimport torchsnooper# 对于函数,使用修饰器@torchsnooper.snoop()# 如果不是函数,使用 with 语句来激活 TorchSnooper,把训练的那个循环装进 with 语句中去。with torchsnooper.snoop():    原本的代码

https://github.com/zasdfgbnm/TorchSnoopergithub.com

模型可解释性,使用captum库:
https://captum.ai/captum.ai

文末福利
后台回复关键词【入群
加入卖萌屋NLP/IR/Rec与求职讨论群
有顶会审稿人、大厂研究员、知乎大V和妹纸
等你来撩哦~

参考文献

[1] 张皓:PyTorch Cookbook(用代码段整理合集),
https://zhuanlan.zhihu.com/p/59205847\?
[2] PyTorch官方文档和示例
[3] https://pytorch.org/docs/stable/notes/faq.html
[4] https://github.com/szagoruyko/pytorchviz
[5] https://github.com/sksq96/pytorch-summary

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

想成长为一名实战型架构师?7大实战技能经验分享

很多同学想成为一名架构师,但是对于其中的技能掌握程度&#xff0c;以及编程功底的要求&#xff1f;设计能力的要求有哪些&#xff1f; 我简要从以下7点经验来谈&#xff0c;从技能的角度抛砖引玉。 编程基本功&#xff1a;数据结构和算法 1.数据结构相关的哈希表、链表、二叉…

LeetCode 70. 爬楼梯(动态规划)

题目链接&#xff1a;https://leetcode-cn.com/problems/climbing-stairs/ 之前在递归中讲过这个问题&#xff0c;现在用动态规划求解。 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 注意&…

技术动态 | 藏经阁计划发布一年,阿里知识引擎有哪些技术突破?

本文转载自公众号&#xff1a;阿里技术。导读&#xff1a;2018年4月阿里巴巴业务平台事业部——知识图谱团队联合清华大学、浙江大学、中科院自动化所、中科院软件所、苏州大学等五家机构&#xff0c;联合发布藏经阁&#xff08;知识引擎&#xff09;研究计划。藏经阁计划依赖阿…

python中模块、函数与各个模块之间的调用

1 针对一个模块的函数调用 a &#xff1a; import 模块名 模块名.函数名 b&#xff1a; from 模块名 import 函数名 &#xff08;as 别名&#xff09; python调用另一个.py文件中的类和函数 同一文件夹下的调用 1.调用函数 A.py文件如下&#xff1a; def add(x,y): print(‘和…

模拟退火算法求解TSP问题

前言&#xff1a;模拟退火&#xff08;simulated annealing&#xff09;技术&#xff0c;在每一步都以一定的概率接受比当前结果更差的结果&#xff0c;从而有助于“跳出”局部极小。在每次迭代过程中&#xff0c;接受“次优解”的概率要随着时间的推移而逐渐降低&#xff0c;从…

一篇文章彻底搞懂“分布式事务”

在如今的分布式盛行的时代&#xff0c;分布式事务永远都是绕不开的一个话题&#xff0c;今天就谈谈分布式事务相关的一致性与实战解决方案。 01 为什么需要分布式事务 由于近十年互联网的发展非常迅速&#xff0c;很多网站的访问越来越大&#xff0c;集中式环境已经不能满足业…

C++很难学?这个ACM金牌大佬可不这么认为!

C作为一门底层可操作性很强的语言&#xff0c;广泛应用于游戏开发、工业和追求性能、速度的应用。比如腾讯&#xff0c;无论游戏&#xff0c;还是微信&#xff0c;整个鹅厂后台几乎都是 C 开发&#xff0c;对 C 开发者的需求非常大。但问题是C入门和精通都比较困难&#xff0c;…

数据结构--位图 BitMap

文章目录1. 位图2. 位图代码3. 布隆过滤器 Bloom Filter4. 总结1. 位图 我们有1千万个整数&#xff0c;整数的范围在1到1亿之间。如何快速查找某个整数是否在这1千万个整数中呢&#xff1f; 当然&#xff0c;这个问题可以用散列表来解决。可以使用一种特殊的散列表&#xff0…

领域应用 | 企业效益最大化的秘密:知识图谱

本文转载自公众号&#xff1a;TigerGraph。凡是有关系的地方都可以用知识图谱。知识图谱知识图谱是用节点和关系所组成的图谱&#xff0c;为真实世界的各个场景直观地建模&#xff0c;运用“图”这种基础性、通用性的“语言”&#xff0c;“高保真”地表达这个多姿多彩世界的各…

国家一级职业资格证书 计算机类有哪些

当前bai&#xff0c;计算机证书考试多种du多样&#xff0c;水平参差不齐。比较正规且得到社会zhi认可的dao计算机证书考试有以下几种&#xff1a;全国计算机应用软件人员水平考试、计算机等级考试、计算机及信息高新技术考试、计算机应用水平测试和各种国外著名大计算机公司组织…

阿里P8架构师谈:分布式系统全局唯一ID简介、特点、5种生成方式

什么是分布式系统唯一ID 在复杂分布式系统中&#xff0c;往往需要对大量的数据和消息进行唯一标识。 如在金融、电商、支付、等产品的系统中&#xff0c;数据日渐增长&#xff0c;对数据分库分表后需要有一个唯一ID来标识一条数据或消息&#xff0c;数据库的自增ID显然不能满足…

朴素贝叶斯算法--过滤垃圾短信

文章目录1. 基于黑名单过滤2. 基于规则过滤3. 基于概率统计过滤4. 总结上一节我们讲到&#xff0c;如何用位图、布隆过滤器&#xff0c;来 过滤重复数据。今天&#xff0c;我们再讲一个跟过滤相关的问题&#xff0c;如何过滤垃圾短信&#xff1f;1. 基于黑名单过滤 可以维护一…

2020深度文本匹配最新进展:精度、速度我都要!

文 | QvQ编 | 兔子酱在过去的几年里&#xff0c;信息检索(IR)领域见证了一系列神经排序模型的引入&#xff0c;这些模型多是基于表示或基于交互的&#xff0c;亦或二者的融合。然鹅&#xff0c;模型虽非常有效&#xff0c;尤其是基于 PLMs 的排序模型更是增加了几个数量级的计算…

开源开放 | Gowild 狗尾草“七律”知识图谱进入 OpenKG,开放 8000 万中文百科知识三元组数据...

项目网站: https://ai.gowild.cn/kgOpenKG发布地址: http://openkg.cn/dataset/7lore狗尾草科技&#xff1a;https://www.gowild.cn1.七律开放知识图谱简介作为人工智能技术的重要分支&#xff0c;知识图谱自2012年被提出并成功应用后&#xff0c;就获得了迅速发展&#xff0c;…

向量空间 Vector Space -- 推荐系统

文章目录1. 算法解析2. 基于相似用户做推荐3. 基于相似歌曲做推荐4. 总结音乐App的功能越来越强大&#xff0c;不仅可以自己选歌听&#xff0c;还可以根据你听歌的口味偏好&#xff0c; 给你推荐可能会喜爱的音乐&#xff0c;有时候&#xff0c;推荐的还非常适合你的口味。1. 算…

阿里P8架构师谈:分布式事务的解决方案,以及原理、总结

分布式事务是企业集成中的一个技术难点&#xff0c;也是每一个分布式系统架构中都会涉及到的一个东西&#xff0c;特别是在这几年越来越火的微服务架构中&#xff0c;几乎可以说是无法避免&#xff0c;本文就围绕分布式事务各方面与大家进行介绍。 事务 1.1 什么是事务 数据库…

美团NLP中心算法实习生内推啦!

星标/置顶小屋&#xff0c;带你解锁最萌最前沿的NLP、搜索与推荐技术部门介绍搜索与NLP部是美团人工智能技术研发的核心团队&#xff0c;致力于打造高性能、高扩展的搜索引擎和领先的自然语言处理核心技术和服务能力&#xff0c;依托搜索排序&#xff0c;NLP&#xff08;自然语…

B+树 -- MySQL数据库索引

文章目录1. 定义清楚问题2. 尝试学过的数据结构解决问题3. 改造二叉查找树来解决问题4. 总结为了加速数据库中数据的查找速度&#xff0c;我们常对表中数据创建索引。数据库索引是如何实现的呢&#xff1f;底层使用的是什么数据结构和算法呢&#xff1f; 1. 定义清楚问题 如何…

创建python的虚拟环境(图文教程),并使用。

创建python的虚拟环境 第一步&#xff1a;打开anaconda命令行&#xff0c;即打开anaconda prompt。 base的主环境切换到虚拟环境nlp (base) C:\Users\user>conda env list 查看环境列表 (base) C:\Users\user>conda create -n nlp python 创建一个虚拟环境&#xff0…

领域应用 | 到底什么时候使用图数据库?

本文转载自公众号&#xff1a;TigerGraph。图数据库作为近两年快速发展的新型数据受到了市场极大的关注。但对于很多行业而言&#xff0c;图数据库还是一个很新的概念&#xff0c;企业管理人员和技术人员面临着同样的问题&#xff1a;企业的业务适不适合使用图&#xff1f;到底…