详解预训练模型、信息抽取、文本生成、知识图谱、对话系统技术

我们正处在信息爆炸的时代、面对每天铺天盖地的网络资源和论文、很多时候们面临的问题并不是缺资源,而是找准资源并高效学习。其次,即便网络上的资源非常多,学习是需要成本的,而且越有深度的内容越难找到好的学习资源。如果一门课程帮助你清晰地梳理知识体系,而且把有深度的知识点脉络讲清楚,这就是节省最大的成本。为了迎合大家学习的需求,我们这次重磅推出了《自然语言处理高阶研修》。

首先,全网不可能找得到另外一门系统性的训练营具备如此的深度和广度,这里包括国外的课程,所以从内容的角度来讲是非常稀缺的内容。

课程覆盖了从预训练模型、对话系统、信息抽取、知识图谱、文本生成所有必要的技术应用和学术前沿,30+项目案例帮助你在实战中学习成长。课程采用全程直播授课模式,博导级大咖全程辅导答疑、帮你告别疑难困惑。

适合什么样的人来参加呐?

  • 从事AI行业多年,但技术上感觉不够深入,遇到了瓶颈; 

  • 停留在使用模型/工具上,很难基于业务场景来提出新的模型; 

  • 对于机器学习背后的优化理论、前沿的技术不够深入;

  • 计划从事尖端的科研、研究工作、申请AI领域研究生、博士生; 

  • 打算进入顶尖的AI公司如Google,Facebook,Amazon, 阿里等;

  • 读ICML,IJCAI等会议文章比较吃力,似懂非懂,无法把每个细节理解透。

如果对课程感兴趣,请联系

添加课程顾问小姐姐微信

报名、课程咨询

????????????

01 课程大纲

课程内容上做了大幅度的更新,课程采用全程直播授课模式。带你全面掌握自然语言处理技术,能够灵活应用在自己的工作中;深入理解前沿的技术,为后续的科研打下基础;快速掌握理解预训练技术、对话技术、生成技术以及知识图谱的常用技术;通过完成一系列课题,有可能成为一个创业项目或者转换成你的科研论文。

模块一 预训练模型

第一章:预训练模型基础

| 预训练模型基础、语言模型回顾

| N-gram、Neural语言模型回顾

| 预训练方法的发展历程

| 预训练和transfer learning

| Pre-BERT时代的transfer learning

| word2vec,transfer learning in NER

| Post-BERT时代的transfer learning

| Pre-train fine-tune范式

第二章:ELmo与BERT

| Elmo、Transformer、BERT

| 更强的BERT:RoBERTa

| 基于Elmo和BERT的NLP下游任务

| Huggingface Transformers库介绍 

| 构建基于BERT的情感分类器

 第三: GPT系列模型

| GPT、GPT2、GPT3 

| 基于GPT的fine-tuning

| 基于GPT的Zero-shot learning

| 基于GPT模型的文本生成实战

| Top-k + Top-p 采样

| 基于给定Prompt生成续写文本

第四: Transformer-XL与XLNet

| 处理长文本 

| Transformer-XL

| 相对位置编码

| Permutation Language Model

| Two-stream attention

| XLNet

| 更进阶的预训练任务:MPNet

第五:其他前沿的预训练模型

| 考虑知识的预训练模型:ERINE

| 对话预训练模型:PLATO2, DialoGPT

| SpanBERT

| MASS,UniLM

| BART,T5

| 实现基于T5的文本分类模型

第六: 低计算量下模型微调和对比学习

| 低计算量情况下的预训练模型微调

| Adapter-based fine-tuning,

| Prompt-search,P-tuning 

| 基于对比学习的预训练

| 对比学习目标:Triplet Loss,InfoNCE Loss

| 对比学习在NLP中的前沿应用:SimCSE

第七:多模态预训练和挑战

| 多模态预训练模型

| 多模态匹配模型:CLIP,文澜

| VQ-VAE

| 多模态生成模型:DALLE,CogView

| 预训练模型面临的挑战及其前沿进展

| 模型并行带来的挑战

| 对于Transformer的改进:Reformer

模块二 对话系统

第一:对话系统综述

| 对话系统发展历程

| 对话系统的主要应用场景

| 常见的对话系统类别以及采用的技术

| 对话系统前沿的技术介绍

| 基础:语言模型

| 基础:基于神经网络的语言模型

第二:对话系统综述

| 任务型对话系统的总体架构

| 案例:订票系统的搭建

| 自然语言理解模块简介

| 对话管理模块技术

| 对话生成模型技术

| 基于神经网络的文本分类和序列标注

第三:自然语言处理理解模块

| 自然语言理解模块面临的挑战

| NLU模型中意图和槽位的联合识别

| 考虑长上下文的NLU

| NLU中的OOD检测

| NLU模型的可扩展性和少样本学习

| 少样本学习方法介绍

| 孪生网络、匹配网络、原型网络

第四:对话管理和对话生成

| 对话状态追踪

| 对话策略详解

| POMDP技术

| 对话管理的最新研究进展

| 基于RL的对话管理

| 对话生成技术

| 端到端的对话系统

| 基于预训练模型的DST

第五:闲聊对话系统

| 闲聊对话系统基础技术

| 基于检索的闲聊对话系统

| 基于生成的闲聊对话系统

| 融合检索和生成的闲聊对话系统

| Protoype rewriting, Retrieval augmented generation

| 闲聊对话系统的主要应用场景

| 闲聊对话系统技术所面临的主要挑战

| FAQ系统实战,实现一个自己的FAQ系统

| 基于RNN/Transformer/BERT的文本匹配模型

第六:对话系统进阶

| 情感/共情对话系统

| 生成带情绪的回复

| 个性化对话生成

| 生成符合特定个性人设的回复

| 风格化对话生成

| 对话回复的多样性

| Label Smoothing, Adaptive label smoothing

| Top-K Sampling, Nuclear Sampling

| Non-autoregressive 算法在生成模型中的应用

| 基于Transformer的对话生成模型

| TransferTransfo

第七:开源对话系统架构RASA详解

| RASA的主要架构

| 基于RASA搭建自己的对话系统

| 多模态对话、VQA

| 考虑图像模态的对话回复检索和生成

| 基于预训练模型的对话系统

| 基于GPT模型的对话模型

| Meena,PLA

模块三 信息抽取&知识图谱

第一:知识图谱与图数据模型

| 知识图谱:搜索引擎,数据整合,AI

| 实体抽取、关系抽取、词向量

| graph embedding

| 图数据模型:RDF, Cyper

| 结构化数据的关系抽取

| 介绍关系抽取的基本方法

| 介绍结构化数据的信息过滤

第二:知识图谱的设计

| RDF和Property graph的设计

| 创建KG:数据处理、文本和图像

| 推断用到的基本方法

| Path detection

| Centrality and community Detection

| 图结构嵌入方法

| 重要性的基本方法:node,edge

第三:关系抽取和预测

| Hand-built patterns

| Bootstrapping methods

| Supervised methods

| Distant supervision

| Unsupervised methods

| 实体识别的基本方法

第四:低资源信息抽取和推断

| Low-resource NER 

| Low-resource structured models

| Learning multi-lingual Embeddings

| Deepath 

| DIVA

| Generic Statistical Relational Entity Resolution in Knowledge Graphs 

第五:结构化预测模型

| Sequence labeling

| 结构化数据类别:Dependency,constituency

| Stack LSTM

| Stack RNNS

| Tree-structure LSTM

第六:图挖掘的热门应用

| 基本图概念

| Link Prediction

| Recommendation system

| Anomaly detection

| Gated Graph Sequence Neural Networks

模块四 文本生成

第一:Seq2Seq模型与机器翻译

| Seq2seq 模型与机器翻译任务

| 机器翻译中未登录词UNK与subword

| 文本生成coverage

| length normalization

| 低资源语言生成

| 多任务学习

| Tearch Force Model

第二:文本摘要生成(1)

| 摘要生成技术类别

| 生成式摘要生成技术

| 抽取式摘要生成技术

| 基于CNN的文本生成

| 基于RNN的文本生成

第三:文本摘要生成(2)

| Pointer Network 及其应用

| CopyNet 于工业界的落地

| Length Normalization 

| Coverage Normalization

| Text summarization 前沿研究

第四:Creative Writing

| 可控性文本生成

| Story Telling 与预先训练GPT

| 诗词,歌词,藏头诗等文本生成

| 创作性文本生成技巧

第五:多模态文本生成

| ResNet 

| Inception 等预训练图片特征抽取模型

| Image Caption 及其应用

| Table2text

| 图神经网络与文本生成

第六:对抗式文本生成与NL2sql

| 对抗生成网络 GAN模型

| 强化学习基础

| 基于 Policy Gradient 的强化学习

| SeqGAN

| NL2sql :自然语言转SQL

02 部分案例和项目

学员可以选择每个模块完成我们提供的固定项目(以个人为单位),或者以小组为单位完成一个开放式项目(capstone),当然你也可以提出你自己的项目。从项目的立项、中期验收到最终答辩,在这个过程中我们的导师团队会给你建议、并辅助你完成课题, 该课题最终很有可能成为你的创业项目或科研论文!

如果对课程感兴趣,请联系

添加课程顾问小姐姐微信

报名、课程咨询

????????????

03 授课导师

郑老师:清华大学计算机系(计算机科学与人工智能研究部)博士后

美国劳伦斯伯克利国家实验室访问学者

主要从事自然语言处理,对话领域的先行研究与商业化

先后在ACL,EMNLP,AAAI,NeurIPS,TASLP,等国际会议及期刊上发表过10篇以上论文

杨老师:香港城市大学博士, UC Merced博士后,主要从事于机器学习,图卷积,图嵌入的研究。先后在ECCV, Trans on Cybernetics, Trans on NSE, INDIN等国际顶会及期刊上发表过数篇论文。

04直播授课,现场推导演示

区别于劣质的PPT讲解,导师全程现场推导,让你在学习中有清晰的思路,深刻的理解算法模型背后推导的每个细节。更重要的是可以清晰地看到各种模型之间的关系!帮助你打通六脉!

▲源自:LDA模型讲解


▲源自:Convex Optimization 讲解

▲源自:Convergence Analysis 讲解

05 科学的课程安排

采用直播的授课方式,每周3-4次直播教学,包含核心理论课、实战课、复习巩固课以及论文讲解课。教学模式上也参考了美国顶级院校的教学体系。以下为其中一周的课程安排,供参考。 

06 报名须知

1、本课程为收费教学。

2、本期招收学员名额有限

3、品质保障!学习不满意,可在开课后7天内,无条件全额退款。

4、学习本课程需要具备一定的机器学习基础和Python编程基础。

●●●

如果对课程感兴趣,请联系

添加课程顾问小姐姐微信

报名、课程咨询

????????????

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478236.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

会议交流 | 欢迎注册 CCKS2021 全国知识图谱与语义计算大会!

欢迎注册 CCKS2021 全国知识图谱与语义计算大会知万物过去 谱AI未来2021年8月18日至8月21日 广州http://sigkg.cn/ccks2021主办:中国中文信息学会语言与知识计算专业委员会 承办:广东外语外贸大学注册介绍早期注册 1800元/人2021年7月28日前&…

LeetCode 1171. 从链表中删去总和值为零的连续节点(哈希表)

1. 题目 给你一个链表的头节点 head,请你编写代码,反复删去链表中由 总和 值为 0 的连续节点组成的序列,直到不存在这样的序列为止。 删除完毕后,请你返回最终结果链表的头节点。 你可以返回任何满足题目要求的答案。 &#x…

移动端性能监控方案Hertz

性能问题是造成App用户流失的罪魁祸首之一。App的性能问题包括崩溃、网络请求错误或超时、响应速度慢、列表滚动卡顿、流量大、耗电等等。而导致App性能低下的原因有很多,除去设备硬件和软件的外部因素,其中大部分是开发者错误地使用线程、锁、系统函数、…

刷新SOTA!Salesforce提出跨模态对比学习新方法,仅需4M图像数据!

文 | 子龙多模态已经不是一个新鲜的话题,如何在一个模型中融合CV和NLP的信息同时吸引了两个领域的目光(CV、NLP的会都能投),但是很容易就能想到,来自图片的视觉特征和来自语料的文本特征来自不同的模型,所隐…

论文浅尝 - ACL2021 | 探讨跨句事件联合抽取问题

转载公众号 | 浙大KG论文题目:MLBiNet: A Cross-Sentence Collective Event Detection Network本文作者:娄东方、廖智霖、邓淑敏、张宁豫、陈华钧(浙江大学)接收会议:ACL 2021论文链接:https://arxiv.org/p…

LeetCode 343. 整数拆分(DP)

1. 题目 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 1 1, 1 1 1。示例 2: 输入: 10 输出: 36 解释: 10 3 3 4, 3 3 4 36。 说明: 你可以假设 …

python-dotenv解析env文件

python-dotenv解析env文件 最简单和最常见的用法是在应用程序启动时调用load_dotenv,从当前目录或其父目录中的.env文件或指定的路径加载环境变量,然后调用os.getenv提供的与环境相关的方法 .env 文件内容写法 ADMIN_HOST https://uat-rm-gwaaa.cn A…

HDFS NameNode内存详解

前言 《HDFS NameNode内存全景》中,我们从NameNode内部数据结构的视角,对它的内存全景及几个关键数据结构进行了简单解读,并结合实际场景介绍了NameNode可能遇到的问题,还有业界进行横向扩展方面的多种可借鉴解决方案。 事实上&am…

组队瓜分百万奖金池,资深算法工程师带你挑战飞桨论文复现赛!

你是否正在焦虑找不到好的论文?好不容易找到了paper,无法复现出code?缺少科研同行交流,只能独自一人闭门造车?是的,论文复现是要想最快的学习和了解AI领域的方式,复现困境也被叫做“徘徊在 AI 上…

开源开放 | Beyond 预训练语言模型,NLP还需要什么样的知识?

近年来,深度学习技术已广泛应用于NLP领域,但实际应用效果往往受限于缺乏大规模高质量监督样本。2018年底,预训练语言模型横空出世,极大缓解了这个问题,通过“超大规模无监督语料上的预训练语言模型相对少量的监督样本进…

Docker把容器打包成镜像并提交到harbor仓库

Docker把容器打包成镜像并提交到harbor仓库 如果你想要保存当前容器的状态,就可以通过commit来提交获得一个镜像,就好我们虚拟机的时候创建快照,想要回滚到某一个版本 一、首先创建要给tomcat 的本地容器,镜像指定tomcat-alpine:8…

LeetCode 139. 单词拆分(DP)

1. 题目 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明: 拆分时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。 示例 1: 输入: s "…

外卖排序系统特征生产框架

背景 图1 外卖排序系统框架 外卖的排序策略是由机器学习模型驱动的,模型迭代效率制约着策略优化效果。如上图所示,在排序系统里,特征是最为基础的部分:有了特征之后,我们离线训练出模型,然后将特征和模型一…

征稿 | “健康知识图谱”投稿通道开启

Data Intelligence正在与语义网国际知名学者Deborah McGuinness以及Oshani Seneviratne等专家一道组织“个人健康知识图谱”专辑。欢迎投稿!DI专辑Special Issue on Personal Health Knowledge Graphs This special issue at Data Intelligence Journal seeks origi…

清华提出LogME,无需微调就能衡量预训练模型的下游任务表现!

文 | 游凯超源 | THUML引言在深度学习时代,神经网络的参数量越来越大,从头开始训练(train from scratch)的成本也越来越大。幸运的是,在计算机视觉、自然语言处理等人工智能应用的主要领域,人们能够采用迁移学习的预训练-微调范式…

好的代码标准

需求分析文档需要用精确的数字来描述,避免量变导致质变

LeetCode 140. 单词拆分 II(DP+回溯)

1. 题目 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,在字符串中增加空格来构建一个句子,使得句子中所有的单词都在词典中。返回所有这些可能的句子。 说明: 分隔时可以重复使用字典中的单词。 你可以假设字典中没有重复的…

论文浅尝|简单高效的知识图谱表示学习负样本采样方法

笔记整理 | 陈名杨,浙江大学在读博士生,主要研究方向为知识图谱表示学习Introduction研究知识图谱表示学习(KnowledgeGraph Embedding)可以解决当前很多应用的基本问题,这些方法旨在将知识图谱中的实体(Ent…

常见性能优化策略的总结

本文要感谢我职级评定过程中的一位评委,他建议把之前所做的各种性能优化的案例和方案加以提炼、总结,以文档的形式沉淀下来,并在内部进行分享。力求达到如下效果: 1. 形成可实践、可借鉴、可参考的各种性能优化的方案以及选型考虑…

微软中山大学开源超强的视觉位置编码,涨点显著

文 | 小马源 | 极市平台1.写在前面由于Transformer对于序列数据进行并行操作,所以序列的位置信息就被忽略了。因此,相对位置编码(Relative position encoding, RPE)是Transformer获取输入序列位置信息的重要方法,RPE在自然语言处理任务中已被…