因子分析模型 - 案例按步骤详解 - (SPSS建模)

一、SPSS中的因子分析。

步骤:

(1)定义变量:x1-财政用于农业的支出的比重,x2-第二、三产业从业人数占全社会从业人数的比重,x3-非农村人口比重,x4-乡村从业人员占农村人口的比重,x5-农业总产值占农林牧总产值的比重,x6-农作物播种面积,x7农村用电量。

(2)导入数据:file-open-data


(3)变量标准化Analyze-Descriptive Statistics-Descriptives

 


勾选Save standardized values as variables保存变量,再点击ok,就完成了对变量的标准化。

(4)因子分析

Analyze—Dimension Reduction—Faction

 

点击右侧的Description选项,选择Statistics选项组中的initial solution,勾选Correlation Matrix选项组中的Coefficients和KMO and Bartlelts test of sphericity,点击Continue。

 

点击右侧Extraction选项,其中Method选Principal components,Analyze选择Correlation matrix,Display中选择Unrotated factor solution,Extract如图,点击Continue.

 

点击右侧Rotation选项,勾选Method选项组中的Varimax,Display中的两个选项都勾选,点击Continue。


点击右侧Scores,如图勾选,点击点击Continue。


最后点击options,默认

 

(5)结果分析

1.KMO and Bartlett's的检验结果图

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.

.725

Bartlett's Test of Sphericity

Approx. Chi-Square

255.159

df

21

Sig.

.000

可以从此表中看出KMO统计量为0.725,大于最低标准,说明适合做因子分析,Bartlet球形检验,p<0.001,适合做因子分析。

2.主成分列表

Total Variance Explained

Component

Initial Eigenvalues

Extraction Sums of Squared Loadings

Rotation Sums of Squared Loadings

Total

% of Variance

Cumulative %

Total

% of Variance

Cumulative %

Total

% of Variance

Cumulative %

1

5.920

84.572

84.572

5.920

84.572

84.572

3.308

47.261

47.261

2

.653

9.330

93.902

.653

9.330

93.902

3.265

46.641

93.902

3

.249

3.559

97.462

 

 

 

 

 

 

4

.126

1.798

99.259

 

 

 

 

 

 

5

.042

.595

99.854

 

 

 

 

 

 

6

.008

.108

99.962

 

 

 

 

 

 

7

.003

.038

100.000

 

 

 

 

 

 

Extraction Method: Principal Component Analysis.

可以从此表中看出前2个主成分特征值较大,它们的累积贡献率达到了93.902%,故选择前2个公共因子。

 

3.公因子方差比结果图

Communalities

 

Initial

Extraction

Zscore(财政用于农业的支出的比重)

1.000

.906

Zscore:  第二、三产业从业人数占全社会从业人数的比重(%)

1.000

.940

Zscore:  非农村人口比重(%)

1.000

.979

Zscore(乡村从业人员占农村人口的比重)

1.000

.977

Zscore(农业总产值占农林牧总产值的比重)

1.000

.943

Zscore:  农作物播种面积(千公顷)

1.000

.909

Zscore:  农村用电量(亿千瓦时)

1.000

.918

Extraction Method: Principal Component Analysis.

结果显示,每一个指标变量的共性方差都在0.9以上,说明这2个公共因子能够很好地反应原始各项指标变量的绝大部分内容。

4.载荷散点图


从载荷散点图可以看出,第一公共因子能很好解释变量x1-财政用于农业的支出的比重,变量x5-农业总产值占农林牧总产值的比重,第二公共因子能很好地解释变量x2-第二、三产业从业人数占全社会从业人数的比重,x3-非农村人口比重,x4-乡村从业人员占农村人口的比重,x6-农作物播种面积,x7农村用电量。

5.旋转后的因子载荷图

Component Score Coefficient Matrix

 

Component

1

2

Zscore(财政用于农业的支出的比重)

.507

-.697

Zscore:  第二、三产业从业人数占全社会从业人数的比重(%)

.120

.112

Zscore:  非农村人口比重(%)

.170

.066

Zscore(乡村从业人员占农村人口的比重)

.072

.164

Zscore(农业总产值占农林牧总产值的比重)

.026

-.257

Zscore:  农作物播种面积(千公顷)

.691

-.510

Zscore:  农村用电量(亿千瓦时)

.247

-.022

Extraction Method: Principal Component Analysis.

 Rotation Method: Varimax with Kaiser Normalization.

 Component Scores.

经过旋转后,农作物播种面积(千公顷)、农村用电量(亿千瓦时)在因子一上有较大载荷,财政用于农业的支出的比重、农业总产值占农林牧总产值的比重咋因子二上有较大载荷。故因子一可称为农业基本发展条件,因子二可称为政府支持情况。

6.历年农民收入总得分降序表

其中F=f1*84.572/93.902+f2*9.330/93.902

年份

f1

f2

总分F

2004

1.46067

0.23231

1.338621494

2005

1.24137

1.08005

1.225341421

1998

1.44755

-1.0258

1.20180065

1999

0.88995

-0.04301

0.797252115

2000

0.83304

0.28099

0.778188916

2001

0.79886

0.42652

0.761864705

2002

0.56754

0.85163

0.595766872

2003

0.29613

1.3662

0.402450985

1997

0.35599

0.15899

0.336416295

1996

0.141

0.023

0.129275649

1986

0.0712

-2.97824

-0.231789023

1991

-0.35654

-0.496

-0.370396593

1995

-0.53681

0.53338

-0.430477092

1992

-0.46086

-0.24669

-0.439580303

1994

-0.68793

0.39726

-0.580106709

1990

-0.70907

-0.29782

-0.66820865

1993

-0.78235

0.24344

-0.680428628

1987

-0.88133

-1.73639

-0.966287826

1989

-1.23195

0.22253

-1.087434458

1988

-2.45646

1.00764

-2.112270813

 

数据:

年份

财政用于农业的支出的比重

第二、三产业从业人数占全社会从业人数的比重(%)

非农村人口比重(%)

乡村从业人员占农村人口的比重

农业总产值占农林牧总产值的比重

农作物播种面积(千公顷)

农村用电量(亿千瓦时)

1986

13.43

29.5

17.92

36.01

79.99

150104.07

253.1

1987

12.2

31.3

19.39

38.62

75.63

146379.53

320.8

1988

7.66

37.6

23.71

45.9

69.25

143625.87

508.9

1989

9.42

39.9

26.21

49.23

62.75

146553.93

790.5

1990

9.98

39.9

26.41

49.93

64.66

148362.27

844.5

1991

10.26

40.3

26.94

50.92

63.09

149585.8

963.2

1992

10.05

41.5

27.46

51.53

61.51

149007.1

1106.9

1993

9.49

43.6

27.99

51.86

60.07

147740.7

1244.9

1994

9.2

45.7

28.51

52.12

58.22

148240.6

1473.9

1995

8.43

47.8

29.04

52.41

58.43

149879.3

1655.7

1996

8.82

49.5

30.48

53.23

60.57

152380.6

1812.7

1997

8.3

50.1

31.91

54.93

58.23

153969.2

1980.1

1998

10.69

50.2

33.35

55.84

58.03

155705.7

2042.2

1999

8.23

49.9

34.78

57.16

57.53

156372.81

2173.45

2000

7.75

50

36.22

59.33

55.68

156299.85

2421.3

2001

7.71

50

37.66

60.62

55.24

155707.86

2610.78

2002

7.17

50

39.09

62.02

54.51

154635.51

2993.4

2003

7.12

50.9

40.53

63.72

50.08

152414.96

3432.92

2004

9.67

53.1

41.76

65.64

50.05

153552.55

3933.03

2005

7.22

55.2

42.99

67.59

49.72

155487.73

4375.7



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/475527.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

神经网络 - 用单层感知器实现多个神经元的分类 - (Matlab建模)

训练样本矩阵&#xff1a; P [0.1 0.7 0.8 0.8 1.0 0.3 0.0 –0.3 –0.5 –1.5; 1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 –1.5 –1.3]; 训练样本对应的分类&#xff1a; T [1 1 1 0 0 1 1 1 0 0 ;0 0 0 0 0 1 1 1 1 1]; 用MATLAB实现分类&…

缺失值处理 - 定位空值并用空值的上一个值填充 - (Excel)

今天小助理很烦恼&#xff0c;说要处理一批汇率的数据&#xff0c;用近邻日期的汇率填充汇率为空的日期的汇率&#xff0c;这句话比较拗口&#xff0c;我们用数据解释一下。 比如下表&#xff0c;10月6日和10月8日9日的汇率没有采集到&#xff0c;那么我们就用10月5日的汇率填…

C#开发基础类库

下载地址&#xff1a;http://files.cnblogs.com/dashi/Sxmobi.rar转载于:https://www.cnblogs.com/dashi/archive/2011/09/09/2172506.html

因子分析模型 - 因子分析法原理与代码实现 -(Python,R)

因子分析基本思想 和主成分分析相似&#xff0c;首先从原理上说&#xff0c;主成分分析是试图寻找原有自变量的一个线性组合&#xff0c;取出对线性关系影响较大的原始数据&#xff0c;作为主要成分。 因子分析&#xff0c;是假设所有的自变量可以通过若干个因子&#xff08;中…

ACDSee Photo Manager 12 中文绿色版

用WinRAR解压即玩&#xff0c;无需安装。可以拷贝到USB硬盘&#xff0c;便于携带 凭借易于使用且速度极快的特点&#xff0c;ACDSee 12提供了整理相片、优化拍摄以及与亲朋好友分享往事所需的全部功能。 幻灯片浏览 支持幻灯片浏览图片&#xff0c;并支持背景音乐和多种多样的图…

排序算法 - 6种 - 超炫的动画演示 - Python实现

1.冒泡排序 思路&#xff1a;遍历列表&#xff0c;每一轮每次比较相邻两项&#xff0c;将无序的两项交换&#xff0c;下一轮遍历比前一轮比较次数减1。 def bubble_sort(a_list):for passnum in range(len(a_list)-1, 0, -1):for i in range(passnum):if a_list[i] > a_list…

因子分析模型 - Python 做因子分析简直比 SPSS 还简单 - ( Python、SPSS)

为什么&#xff1f; SPSS 那么简单还免费&#xff0c;为什么还要用 Python 做因子分析&#xff08;factor analysis&#xff09;呢&#xff1f;工作狗表示&#xff0c;建模的目的是要卖钱的&#xff0c;也就是要嵌入到公司开发的产品上去&#xff0c;用 Python 写因子分析&…

缺失值处理 - 拉格朗日插值法 - Python代码

目录 缺失值处理 拉格朗日差值法的理论基础 拉格朗日插值法代码实现 其他数据预处理方法 缺失值处理 处理缺失值常用的办法可分为三类&#xff1a;删除记录、数据插补、不处理。 其中常见的数据插补法有&#xff1a; 如果通过删除小部分的数据就可以达到既定的目标&#…

做po_requisitions_interface_all接口开发问题

po_requisitions_interface_all这个接口表的字段charge_account_id来源于: 1、组织参数的Material Account 2、工单类型的Outside Processing Account 转载于:https://www.cnblogs.com/songdavid/archive/2011/09/19/2181757.html

[Hands On ML] 3. 分类(MNIST手写数字预测)

文章目录1. 数据预览2. 数据集拆分3. 二分类4. 性能评估4.1 交叉验证4.2 准确率、召回率4.3 受试者工作特征&#xff08;ROC&#xff09;曲线5. 多分类6. 误差分析6.1 检查混淆矩阵本文为《机器学习实战&#xff1a;基于Scikit-Learn和TensorFlow》的读书笔记。 中文翻译参考 …

支持向量机 - 从原理到算法的实现

思想&#xff1a;寻找能够成功分开两类样本并且具有最大分类间隔的最优超平面。 1.原理解析 空间中任何一个平面的方程都可以表示为wxb 0,如上图&#xff0c;设最优超平面方程H为wxb0,支持向量x-到H的距离为,要使分类间隔最大&#xff0c;即该距离最大&#xff0c;而该距离只与…

Struts2初始化过程代码分析

根据web.xml的配置 调用FilterDispatcher.init(FilterConfig filterConfig) 1. 创建org.apache.struts2.Dispatcher&#xff0c;并调用init()方法 1.1. 创建com.opensymphony.xwork2.config.ConfigurationManager,其中属性List<ContainerProvider> containerProviders存放…

LeetCode 1292. 元素和小于等于阈值的正方形的最大边长(DP)

1. 题目 给你一个大小为 m x n 的矩阵 mat 和一个整数阈值 threshold。 请你返回元素总和小于或等于阈值的正方形区域的最大边长&#xff1b; 如果没有这样的正方形区域&#xff0c;则返回 0 。 示例 1&#xff1a; 输入&#xff1a;mat [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[…

从这十大算法开始学习机器学习与建模

本文介绍了机器学习新手需要了解的 10 大算法&#xff0c;包括线性回归、Logistic 回归、朴素贝叶斯、K 近邻算法等。 在机器学习中&#xff0c;有一种叫做「没有免费的午餐」的定理。简而言之&#xff0c;它指出没有任何一种算法对所有问题都有效&#xff0c;在监督学习&…

.NET 动态脚本语言Script.NET系列文章汇总 非常精彩的应用举例

对于Script.NET,我已经写了三篇文章来介绍它&#xff0c;文章汇总如下 .NET 动态脚本语言Script.NET 入门指南 Quick Start .NET 动态脚本语言Script.NET 开发指南 .NET 动态脚本语言Script.NET 应用举例 希望这三篇文章能帮助你了解Script.NET。 下面的例子&#xff0c;继续讲…

异常值处理 - iterrows()对 DataFrame 进行遍历,并修改遍历中的异常值 - Python代码

先要有一个很简单的被命名为 data 的表&#xff1a; 第三列是一个名曰周杰伦的人历年来每个月的月薪&#xff0c;其中2016年月薪10万&#xff0c;纵观他历年来的月薪基本不超过3万&#xff08;显然他不是我的偶像胖伦&#xff09;&#xff0c;因此对于这个人来说月薪10万是有些…

LeetCode 44. 通配符匹配(DP)

1. 题目 给定一个字符串 (s) 和一个字符模式 (p) &#xff0c;实现一个支持 ? 和 * 的通配符匹配。 ? 可以匹配任何单个字符。* 可以匹配任意字符串&#xff08;包括空字符串&#xff09;。 两个字符串完全匹配才算匹配成功。 说明: s 可能为空&#xff0c;且只包含从 a-…

HtmlAgilityPack/xpath

【转载】HTML解析利器HtmlAgilityPack在网上发现了一个.NET下的HTML解析类库HtmlAgilityPack。HtmlAgilityPack是一个支持用XPath来解析HTML的类库&#xff0c;在花了一点时间学习了解HtmlAgilityPack的API和XPath之后&#xff0c;周公就做了一个简单的工具完成了这个功能&…

MVVM更容易内存泄露吗?

由于MVVM是把View, ViewModel, Model紧紧绑定在一起的模式&#xff0c;特别视图和视图模型通过实现观察者模式双向绑定和NotifyPropertyChanged事件&#xff0c;似乎更加容易造成内存泄露/内存不释放。网上也有这种说法。真的是这样的吗&#xff1f;我们来实际测试一下。 实际测…

分组统计 - 不同时间颗粒度下,按照秒、分、时、日、周、月、季度、年 GROUP BY 分组统计 - (MySQL)

数据处理时&#xff0c;经常需要&#xff1a;统计不同时间粒度下的数据分布情况。 例如&#xff0c;网站每天&#xff08;or每小时&#xff09;的访问量&#xff0c;周杰伦每年&#xff08;or每季度 or每月&#xff09;的收入等。 首先有一个表叫&#xff1a;table_test&…