文章目录
- 作业1. 建立你的深度神经网络
- 1. 导入包
- 2. 算法主要流程
- 3. 初始化
- 3.1 两层神经网络
- 3.2 多层神经网络
- 4. 前向传播
- 4.1 线性模块
- 4.2 线性激活模块
- 4.3 多层模型
- 5. 损失函数
- 6. 反向传播
- 6.1 线性模块
- 6.2 线性激活模块
- 6.3 多层模型
- 6.4 梯度下降、更新参数
- 作业2. 深度神经网络应用:图像分类
- 1. 导入包
- 2. 数据集
- 3. 建立模型
- 3.1 两层神经网络
- 3.2 多层神经网络
- 3.3 一般步骤
- 4. 两层神经网络
- 5. 多层神经网络
- 6. 结果分析
- 7. 用自己的图片测试
测试题:参考博文
作业1. 建立你的深度神经网络
1. 导入包
import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v2 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'%load_ext autoreload
%autoreload 2np.random.seed(1)
2. 算法主要流程
3. 初始化
第4节笔记:01.神经网络和深度学习 W4.深层神经网络
3.1 两层神经网络
模型结构:LINEAR -> RELU -> LINEAR -> SIGMOID
权重:np.random.randn(shape)*0.01
偏置:np.zeros(shape)
# GRADED FUNCTION: initialize_parametersdef initialize_parameters(n_x, n_h, n_y):"""Argument:n_x -- size of the input layern_h -- size of the hidden layern_y -- size of the output layerReturns:parameters -- python dictionary containing your parameters:W1 -- weight matrix of shape (n_h, n_x)b1 -- bias vector of shape (n_h, 1)W2 -- weight matrix of shape (n_y, n_h)b2 -- bias vector of shape (n_y, 1)"""np.random.seed(1)### START CODE HERE ### (≈ 4 lines of code)W1 = np.random.randn(n_h, n_x)*0.01b1 = np.zeros((n_h, 1))W2 = np.random.randn(n_y, n_h)*0.01b2 = np.zeros((n_y, 1))### END CODE HERE ###assert(W1.shape == (n_h, n_x))assert(b1.shape == (n_h, 1))assert(W2.shape == (n_y, n_h))assert(b2.shape == (n_y, 1))parameters = {"W1": W1,"b1": b1,"W2": W2,"b2": b2}return parameters
3.2 多层神经网络
模型结构:[LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID
# GRADED FUNCTION: initialize_parameters_deepdef initialize_parameters_deep(layer_dims):"""Arguments:layer_dims -- python array (list) containing the dimensions of each layer in our networkReturns:parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])bl -- bias vector of shape (layer_dims[l], 1)"""np.random.seed(3)parameters = {}L = len(layer_dims) # number of layers in the networkfor l in range(1, L):### START CODE HERE ### (≈ 2 lines of code)parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])*0.01parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))### END CODE HERE ###assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))return parameters
4. 前向传播
4.1 线性模块
向量化公式
Z[l]=W[l]A[l−1]+b[l]Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}Z[l]=W[l]A[l−1]+b[l]
其中 A[0]=XA^{[0]} = XA[0]=X
计算 ZZZ,缓存 A,W,bA, W, bA,W,b
# GRADED FUNCTION: linear_forwarddef linear_forward(A, W, b):"""Implement the linear part of a layer's forward propagation.Arguments:A -- activations from previous layer (or input data): (size of previous layer, number of examples)W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)b -- bias vector, numpy array of shape (size of the current layer, 1)Returns:Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently"""### START CODE HERE ### (≈ 1 line of code)Z = np.dot(W, A) + b### END CODE HERE ###assert(Z.shape == (W.shape[0], A.shape[1]))cache = (A, W, b)return Z, cache
4.2 线性激活模块
计算激活输出 AAA,以及缓存 ZZZ (反向传播时要用到)(作业里的激活函数会返回这两项)
A[l]=g(Z[l])=g(W[l]A[l−1]+b[l])A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} +b^{[l]})A[l]=g(Z[l])=g(W[l]A[l−1]+b[l])
其中 ggg 是激活函数,可以是ReLu
,Sigmoid
等
# GRADED FUNCTION: linear_activation_forwarddef linear_activation_forward(A_prev, W, b, activation):"""Implement the forward propagation for the LINEAR->ACTIVATION layerArguments:A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)b -- bias vector, numpy array of shape (size of the current layer, 1)activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"Returns:A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache";stored for computing the backward pass efficiently"""if activation == "sigmoid":# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".### START CODE HERE ### (≈ 2 lines of code)Z, linear_cache = linear_forward(A_prev, W, b)A, activation_cache = sigmoid(Z)### END CODE HERE ###elif activation == "relu":# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".### START CODE HERE ### (≈ 2 lines of code)Z, linear_cache = linear_forward(A_prev, W, b)A, activation_cache = relu(Z)### END CODE HERE ###assert (A.shape == (W.shape[0], A_prev.shape[1]))cache = (linear_cache, activation_cache)return A, cache
4.3 多层模型
前面使用 L−1L-1L−1 层 ReLu
,最后使用 1 层 Sigmoid
# GRADED FUNCTION: L_model_forwarddef L_model_forward(X, parameters):"""Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computationArguments:X -- data, numpy array of shape (input size, number of examples)parameters -- output of initialize_parameters_deep()Returns:AL -- last post-activation valuecaches -- list of caches containing:every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)the cache of linear_sigmoid_forward() (there is one, indexed L-1)"""caches = []A = XL = len(parameters) // 2 # number of layers in the neural network# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.for l in range(1, L):A_prev = A ### START CODE HERE ### (≈ 2 lines of code)A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], 'relu')caches.append(cache) # 每一层的 (A,W,b, Z)### END CODE HERE #### Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.### START CODE HERE ### (≈ 2 lines of code)AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], 'sigmoid')caches.append(cache)### END CODE HERE ###assert(AL.shape == (1,X.shape[1]))return AL, caches
现在得到了一个完整的前向传播,AL 包含预测值,可以计算损失函数
5. 损失函数
计算损失:
−1m∑i=1m(y(i)log(a[L](i))+(1−y(i))log(1−a[L](i)))-\frac{1}{m} \sum\limits_{i = 1}^{m} \bigg(y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \bigg) −m1i=1∑m(y(i)log(a[L](i))+(1−y(i))log(1−a[L](i)))
# GRADED FUNCTION: compute_costdef compute_cost(AL, Y):"""Implement the cost function defined by equation (7).Arguments:AL -- probability vector corresponding to your label predictions, shape (1, number of examples)Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)Returns:cost -- cross-entropy cost"""m = Y.shape[1]# Compute loss from aL and y.### START CODE HERE ### (≈ 1 lines of code)cost = np.sum(Y*np.log(AL)+(1-Y)*np.log(1-AL))/(-m)### END CODE HERE ###cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).assert(cost.shape == ())return cost
6. 反向传播
计算损失函数的梯度:
6.1 线性模块
dW[l]=∂L∂W[l]=1mdZ[l]A[l−1]TdW^{[l]} = \frac{\partial \mathcal{L} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} dW[l]=∂W[l]∂L=m1dZ[l]A[l−1]T
db[l]=∂L∂b[l]=1m∑i=1mdZ[l](i)db^{[l]} = \frac{\partial \mathcal{L} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)}db[l]=∂b[l]∂L=m1i=1∑mdZ[l](i)
dA[l−1]=∂L∂A[l−1]=W[l]TdZ[l]dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} dA[l−1]=∂A[l−1]∂L=W[l]TdZ[l]
# GRADED FUNCTION: linear_backwarddef linear_backward(dZ, cache):"""Implement the linear portion of backward propagation for a single layer (layer l)Arguments:dZ -- Gradient of the cost with respect to the linear output (of current layer l)cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layerReturns:dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prevdW -- Gradient of the cost with respect to W (current layer l), same shape as Wdb -- Gradient of the cost with respect to b (current layer l), same shape as b"""A_prev, W, b = cachem = A_prev.shape[1]### START CODE HERE ### (≈ 3 lines of code)dW = np.dot(dZ, A_prev.T)/mdb = 1/m*np.sum(dZ, axis=1, keepdims=True)dA_prev = np.dot(W.T, dZ)### END CODE HERE ###assert (dA_prev.shape == A_prev.shape)assert (dW.shape == W.shape)assert (db.shape == b.shape)return dA_prev, dW, db
6.2 线性激活模块
dZ[l]=dA[l]∗g′(Z[l])dZ^{[l]} = dA^{[l]} * g'(Z^{[l]})dZ[l]=dA[l]∗g′(Z[l])
# GRADED FUNCTION: linear_activation_backwarddef linear_activation_backward(dA, cache, activation):"""Implement the backward propagation for the LINEAR->ACTIVATION layer.Arguments:dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficientlyactivation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"Returns:dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prevdW -- Gradient of the cost with respect to W (current layer l), same shape as Wdb -- Gradient of the cost with respect to b (current layer l), same shape as b"""linear_cache, activation_cache = cacheif activation == "relu":### START CODE HERE ### (≈ 2 lines of code)dZ = relu_backward(dA, activation_cache)dA_prev, dW, db = linear_backward(dZ, linear_cache)### END CODE HERE ###elif activation == "sigmoid":### START CODE HERE ### (≈ 2 lines of code)dZ = sigmoid_backward(dA, activation_cache)dA_prev, dW, db = linear_backward(dZ, linear_cache)### END CODE HERE ###return dA_prev, dW, db
6.3 多层模型
dAL=−np.divide(Y,AL)+np.divide(1−Y,1−AL)dAL = - np.divide(Y, AL) + np.divide(1 - Y, 1 - AL)dAL=−np.divide(Y,AL)+np.divide(1−Y,1−AL)
# GRADED FUNCTION: L_model_backwarddef L_model_backward(AL, Y, caches):"""Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID groupArguments:AL -- probability vector, output of the forward propagation (L_model_forward())Y -- true "label" vector (containing 0 if non-cat, 1 if cat)caches -- list of caches containing:every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])Returns:grads -- A dictionary with the gradientsgrads["dA" + str(l)] = ... grads["dW" + str(l)] = ...grads["db" + str(l)] = ... """grads = {}L = len(caches) # the number of layersm = AL.shape[1]Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL# Initializing the backpropagation### START CODE HERE ### (1 line of code)dAL = -np.divide(Y, AL) + np.divide(1-Y, 1-AL)### END CODE HERE #### Lth layer (SIGMOID -> LINEAR) gradients. # Inputs: "AL, Y, caches". # Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]### START CODE HERE ### (approx. 2 lines)current_cache = caches[L-1]grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, 'sigmoid')### END CODE HERE ###for l in reversed(range(L-1)):# lth layer: (RELU -> LINEAR) gradients.# Inputs: "grads["dA" + str(l + 2)], caches". # Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] ### START CODE HERE ### (approx. 5 lines)current_cache = caches[l]dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads['dA'+str(l+2)], current_cache, 'relu')grads["dA" + str(l + 1)] = dA_prev_tempgrads["dW" + str(l + 1)] = dW_tempgrads["db" + str(l + 1)] = db_temp### END CODE HERE ###return grads
6.4 梯度下降、更新参数
W[l]=W[l]−αdW[l]W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]}W[l]=W[l]−α dW[l]
b[l]=b[l]−αdb[l]b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]}b[l]=b[l]−α db[l]
# GRADED FUNCTION: update_parametersdef update_parameters(parameters, grads, learning_rate):"""Update parameters using gradient descentArguments:parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backwardReturns:parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ..."""L = len(parameters) // 2 # number of layers in the neural network# Update rule for each parameter. Use a for loop.### START CODE HERE ### (≈ 3 lines of code)for l in range(L):parameters["W" + str(l+1)] = parameters['W'+str(l+1)] - learning_rate * grads['dW'+str(l+1)]parameters["b" + str(l+1)] = parameters['b'+str(l+1)] - learning_rate * grads['db'+str(l+1)]### END CODE HERE ###return parameters
作业2. 深度神经网络应用:图像分类
使用上面的函数,建立深度神经网络,并对图片是不是猫进行预测。
1. 导入包
import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
from dnn_app_utils_v2 import *%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'%load_ext autoreload
%autoreload 2np.random.seed(1)
2. 数据集
01.神经网络和深度学习 W2.神经网络基础(作业:逻辑回归 图片识别)
使用 01W2 作业里面的数据集,逻辑回归的准确率只有 70%
- 加载数据
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
- 查看数据
# Example of a picture
index = 1
plt.imshow(train_x_orig[index])
print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") + " picture.")
- 查看数据大小
# Explore your dataset
m_train = train_x_orig.shape[0]
num_px = train_x_orig.shape[1]
m_test = test_x_orig.shape[0]print ("Number of training examples: " + str(m_train))
print ("Number of testing examples: " + str(m_test))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_x_orig shape: " + str(train_x_orig.shape))
print ("train_y shape: " + str(train_y.shape))
print ("test_x_orig shape: " + str(test_x_orig.shape))
print ("test_y shape: " + str(test_y.shape))
Number of training examples: 209
Number of testing examples: 50
Each image is of size: (64, 64, 3)
train_x_orig shape: (209, 64, 64, 3)
train_y shape: (1, 209)
test_x_orig shape: (50, 64, 64, 3)
test_y shape: (1, 50)
- 图片数据
向量化
# Reshape the training and test examples
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T# Standardize data to have feature values between 0 and 1.
train_x = train_x_flatten/255.
test_x = test_x_flatten/255.print ("train_x's shape: " + str(train_x.shape))
print ("test_x's shape: " + str(test_x.shape))
train_x's shape: (12288, 209) # 12288 = 64 * 64 * 3
test_x's shape: (12288, 50)
3. 建立模型
3.1 两层神经网络
3.2 多层神经网络
3.3 一般步骤
- 初始化参数 / 定义超参数
n_iters
次 迭代循环:
– a. 正向传播
– b. 计算成本函数
– c. 反向传播
– d. 更新参数(使用参数、梯度)- 使用训练好的参数 预测
4. 两层神经网络
- 定义参数
### CONSTANTS DEFINING THE MODEL ####
n_x = 12288 # num_px * num_px * 3
n_h = 7 # 隐藏层单元个数
n_y = 1
layers_dims = (n_x, n_h, n_y)
- 组件模型
# GRADED FUNCTION: two_layer_modeldef two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):"""Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.Arguments:X -- input data, of shape (n_x, number of examples)Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)layers_dims -- dimensions of the layers (n_x, n_h, n_y)num_iterations -- number of iterations of the optimization looplearning_rate -- learning rate of the gradient descent update ruleprint_cost -- If set to True, this will print the cost every 100 iterations Returns:parameters -- a dictionary containing W1, W2, b1, and b2"""np.random.seed(1)grads = {}costs = [] # to keep track of the costm = X.shape[1] # number of examples(n_x, n_h, n_y) = layers_dims# Initialize parameters dictionary, by calling one of the functions you'd previously implemented### START CODE HERE ### (≈ 1 line of code)parameters = initialize_parameters(n_x, n_h, n_y)### END CODE HERE #### Get W1, b1, W2 and b2 from the dictionary parameters.W1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]# Loop (gradient descent)for i in range(0, num_iterations):# Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. # Inputs: "X, W1, b1". # Output: "A1, cache1, A2, cache2".### START CODE HERE ### (≈ 2 lines of code)A1, cache1 = linear_activation_forward(X, W1, b1, 'relu')A2, cache2 = linear_activation_forward(A1, W2, b2, 'sigmoid')### END CODE HERE #### Compute cost### START CODE HERE ### (≈ 1 line of code)cost = compute_cost(A2, Y)### END CODE HERE #### Initializing backward propagationdA2 = - np.divide(Y, A2) + np.divide(1 - Y, 1 - A2)# Backward propagation. # Inputs: "dA2, cache2, cache1". # Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".### START CODE HERE ### (≈ 2 lines of code)dA1, dW2, db2 = linear_activation_backward(dA2, cache2, 'sigmoid')dA0, dW1, db1 = linear_activation_backward(dA1, cache1, 'relu')### END CODE HERE #### Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2grads['dW1'] = dW1grads['db1'] = db1grads['dW2'] = dW2grads['db2'] = db2# Update parameters.### START CODE HERE ### (approx. 1 line of code)parameters = update_parameters(parameters, grads, learning_rate)### END CODE HERE #### Retrieve W1, b1, W2, b2 from parametersW1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]# Print the cost every 100 training exampleif print_cost and i % 100 == 0:print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))if print_cost and i % 100 == 0:costs.append(cost)# plot the costplt.plot(np.squeeze(costs))plt.ylabel('cost')plt.xlabel('iterations (per tens)')plt.title("Learning rate =" + str(learning_rate))plt.show()return parameters
- 训练
parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
Cost after iteration 0: 0.693049735659989
Cost after iteration 100: 0.6464320953428849
Cost after iteration 200: 0.6325140647912678
Cost after iteration 300: 0.6015024920354665
Cost after iteration 400: 0.5601966311605747
Cost after iteration 500: 0.5158304772764729
Cost after iteration 600: 0.4754901313943325
Cost after iteration 700: 0.43391631512257495
Cost after iteration 800: 0.4007977536203887
Cost after iteration 900: 0.35807050113237976
Cost after iteration 1000: 0.33942815383664127
Cost after iteration 1100: 0.30527536361962654
Cost after iteration 1200: 0.2749137728213016
Cost after iteration 1300: 0.24681768210614846
Cost after iteration 1400: 0.19850735037466097
Cost after iteration 1500: 0.17448318112556657
Cost after iteration 1600: 0.1708076297809689
Cost after iteration 1700: 0.11306524562164715
Cost after iteration 1800: 0.09629426845937145
Cost after iteration 1900: 0.08342617959726863
Cost after iteration 2000: 0.07439078704319078
Cost after iteration 2100: 0.06630748132267933
Cost after iteration 2200: 0.0591932950103817
Cost after iteration 2300: 0.05336140348560554
Cost after iteration 2400: 0.04855478562877016
- 预测
训练集:Accuracy: 0.9999999999999998
predictions_train = predict(train_x, train_y, parameters)
# Accuracy: 0.9999999999999998
测试集:Accuracy: 0.72,比之前的逻辑回归 0.70 好一些
predictions_test = predict(test_x, test_y, parameters)
# Accuracy: 0.72
5. 多层神经网络
- 定义参数,5层 NN
### CONSTANTS ###
layers_dims = [12288, 20, 7, 5, 1] # 5-layer model
- 组件模型
# GRADED FUNCTION: L_layer_modeldef L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009"""Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.Arguments:X -- data, numpy array of shape (number of examples, num_px * num_px * 3)Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).learning_rate -- learning rate of the gradient descent update rulenum_iterations -- number of iterations of the optimization loopprint_cost -- if True, it prints the cost every 100 stepsReturns:parameters -- parameters learnt by the model. They can then be used to predict."""np.random.seed(1)costs = [] # keep track of cost# Parameters initialization.### START CODE HERE ###parameters = initialize_parameters_deep(layers_dims)### END CODE HERE #### Loop (gradient descent)for i in range(0, num_iterations):# Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.### START CODE HERE ### (≈ 1 line of code)AL, caches = L_model_forward(X, parameters)### END CODE HERE #### Compute cost.### START CODE HERE ### (≈ 1 line of code)cost = compute_cost(AL, Y)### END CODE HERE #### Backward propagation.### START CODE HERE ### (≈ 1 line of code)grads = L_model_backward(AL, Y, caches)### END CODE HERE #### Update parameters.### START CODE HERE ### (≈ 1 line of code)parameters = update_parameters(parameters, grads, learning_rate)### END CODE HERE #### Print the cost every 100 training exampleif print_cost and i % 100 == 0:print ("Cost after iteration %i: %f" %(i, cost))if print_cost and i % 100 == 0:costs.append(cost)# plot the costplt.plot(np.squeeze(costs))plt.ylabel('cost')plt.xlabel('iterations (per tens)')plt.title("Learning rate =" + str(learning_rate))plt.show()return parameters
- 训练
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
Cost after iteration 0: 0.771749
Cost after iteration 100: 0.672053
Cost after iteration 200: 0.648263
Cost after iteration 300: 0.611507
Cost after iteration 400: 0.567047
Cost after iteration 500: 0.540138
Cost after iteration 600: 0.527930
Cost after iteration 700: 0.465477
Cost after iteration 800: 0.369126
Cost after iteration 900: 0.391747
Cost after iteration 1000: 0.315187
Cost after iteration 1100: 0.272700
Cost after iteration 1200: 0.237419
Cost after iteration 1300: 0.199601
Cost after iteration 1400: 0.189263
Cost after iteration 1500: 0.161189
Cost after iteration 1600: 0.148214
Cost after iteration 1700: 0.137775
Cost after iteration 1800: 0.129740
Cost after iteration 1900: 0.121225
Cost after iteration 2000: 0.113821
Cost after iteration 2100: 0.107839
Cost after iteration 2200: 0.102855
Cost after iteration 2300: 0.100897
Cost after iteration 2400: 0.092878
- 预测
训练集:Accuracy: 0.9856459330143539
pred_train = predict(train_x, train_y, parameters)
# Accuracy: 0.9856459330143539
测试集:Accuracy: 0.8,比逻辑回归 0.70,两层NN 0.72 都要好
pred_test = predict(test_x, test_y, parameters)
# Accuracy: 0.8
下一门课将会系统的学习如何调参,使得模型的效果更好
6. 结果分析
def print_mislabeled_images(classes, X, y, p):"""Plots images where predictions and truth were different.X -- datasety -- true labelsp -- predictions"""a = p + ymislabeled_indices = np.asarray(np.where(a == 1)) # 0+1, 1+0, wrong caseplt.rcParams['figure.figsize'] = (40.0, 40.0) # set default size of plotsnum_images = len(mislabeled_indices[0])for i in range(num_images):index = mislabeled_indices[1][i]plt.subplot(2, num_images, i + 1)plt.imshow(X[:,index].reshape(64,64,3), interpolation='nearest')plt.axis('off')plt.title("Prediction: " + classes[int(p[0,index])].decode("utf-8") + " \n Class: " + classes[y[0,index]].decode("utf-8"))print_mislabeled_images(classes, test_x, test_y, pred_test)
错误特点:
- 猫的身体在一个不寻常的位置
- 猫出现在一个相似颜色的背景下
- 不常见的猫颜色和种类
- 照相机角度
- 图片的亮度
- 大小程度(猫在图像中非常大或很小)
7. 用自己的图片测试
## START CODE HERE ##
my_image = "my_image.jpg" # change this to the name of your image file
my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
## END CODE HERE ##fname = "images/" + my_image
image = Image.open(fname)
my_image = np.array(image.resize((num_px,num_px))).reshape((num_px*num_px*3,1))
my_predicted_image = predict(my_image, my_label_y, parameters)plt.imshow(image)
print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
Accuracy: 1.0
y = 1.0, your L-layer model predicts a "cat" picture.
我的CSDN博客地址 https://michael.blog.csdn.net/
长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!