Spark—RDD编程常用转换算子代码实例
Spark rdd 常用 Transformation 实例:
1、def map[U: ClassTag](f: T => U): RDD[U] 将函数应用于RDD的每一元素,并返回一个新的RDD
packagetop.ruandbimportorg.apache.spark.{SparkConf, SparkContext}
object RddTestextendsApp{
val sparkConf= new SparkConf().setAppName("RddTest").setMaster("local[2]")
val sc= newSparkContext(sparkConf)//map
var source = sc.parallelize(1 to 10)
source.collect().foreach(e=>print(e+","))//1 2 3 4 5 6 7 8 9 10
var sourceMap = source.map(_*10)
sourceMap.collect().foreach(e=>print(e+","))//10 20 30 40 50 60 70 80 90 100
}
2、def filter(f: T => Boolean): RDD[T] 通过提供的产生boolean条件的表达式来返回符合结果为True新的RDD
//filter
var source = sc.parallelize(1 to 10)
source.collect().foreach(e=>print(e+" "))//1 2 3 4 5 6 7 8 9 10
var sourceMap = source.filter(_.
sourceMap.collect().foreach(e=>print(e+" "))//1 2 3 4
3、def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] 将函数应用于RDD中的每一项,对于每一项都产生一个集合,并将集合中的元素压扁成一个集合。
//flatMap
var source = sc.parallelize(1 to 5)
source.collect().foreach(e=>print(e+" "))//1 2 3 4 5
var sourceMap = source.flatMap(x=>(1to x))
sourceMap.collect().foreach(e=>print(e+" "))//1 1 2 1 2 3 1 2 3 4 1 2 3 4 5
4、def mapPartitions[U: ClassTag]( f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] 将函数应用于RDD的每一个分区,每一个分区运行一次,函数需要能够接受Iterator类型,然后返回Iterator。
packagetop.ruandbimportorg.apache.spark.{SparkConf, SparkContext}
object RddTest {
def main(args: Array[String]): Unit={
val sparkConf= new SparkConf().setAppName("RddTest").setMaster("local[2]")
val sc= newSparkContext(sparkConf)//mapPartitions
var source = sc.parallelize(List(("lucy", "female"), ("jack", "male"), ("jams", "male")))
source.collect().foreach(e=> print(e + " "))//(lucy,female) (jack,male) (jams,male)
var sourceMap =source.mapPartitions(partitionsFun)
sourceMap.collect().foreach(e=> print(e + " ")) //jams jack
}
def partitionsFun(iter:Iterator[(String,String)]): Iterator[String]={
var males=List[String]()while(iter.hasNext){
val next=iter.next()
next match {case (_,"male") => males =next._1::malescase _ =>}
}returnmales.iterator
}
}
5、def mapPartitionsWithIndex[U: ClassTag]( f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] 将函数应用于RDD中的每一个分区,每一个分区运行一次,函数能够接受 一个分区的索引值 和一个代表分区内所有数据的Iterator类型,需要返回Iterator类型。
packagetop.ruandbimportorg.apache.spark.{SparkConf, SparkContext}
object RddTest {
def main(args: Array[String]): Unit={
val sparkConf= new SparkConf().setAppName("RddTest").setMaster("local[2]")
val sc= newSparkContext(sparkConf)//mapPartitionsWithIndex
var source = sc.parallelize(List(("lucy", "female"), ("jack", "male"), ("jams", "male")))
source.collect().foreach(e=> print(e + " "))//(lucy,female) (jack,male) (jams,male)
var sourceMap =source.mapPartitionsWithIndex(partitionsFunWithIndex)
sourceMap.collect().foreach(e=> print(e + " ")) //[1]jams [1]jack
}
def partitionsFunWithIndex(index:Int,iter:Iterator[(String,String)]): Iterator[String]={
var males=List[String]()while(iter.hasNext){
val next=iter.next()
next match {case (_,"male") => males="["+index+"]"+next._1 :: malescase _ =>}
}
males.iterator
}
}
6、def sample(withReplacement: Boolean, fraction: Double, seed: Long = Utils.random.nextLong): RDD[T] 在RDD中移seed为种子返回大致上有fraction比例个数据样本RDD,withReplacement表示是否采用放回式抽样。
packagetop.ruandbimportorg.apache.spark.{SparkConf, SparkContext}
object RddTest {
def main(args: Array[String]): Unit={
val sparkConf= new SparkConf().setAppName("RddTest").setMaster("local[2]")
val sc= newSparkContext(sparkConf)//sample
var source = sc.parallelize(1 to 10)
source.collect().foreach(e=> print(e + " "))//1 2 3 4 5 6 7 8 9 10
var sourceMap = source.sample(true,0.4,2)
sourceMap.collect().foreach(e=> print(e + " ")) //1 2 2
}
}
7、def union(other: RDD[T]): RDD[T] 将两个RDD中的元素进行合并,返回一个新的RDD
//union
var source = sc.parallelize(1 to 3)
source.collect().foreach(e=> print(e + " "))//1 2 3
var rdd = sc.parallelize(6 to 9)
var sourceMap=source.union(rdd)
sourceMap.collect().foreach(e=> print(e + " "))//1 2 3 6 7 8 9
8、def intersection(other: RDD[T]): RDD[T] 将两个RDD做交集,返回一个新的RDD
//intersection
var source = sc.parallelize(1 to 8)
source.collect().foreach(e=> print(e + " "))//1 2 3 4 5 6 7 8
var rdd = sc.parallelize(6 to 9)
var sourceMap=source.intersection(rdd)
sourceMap.collect().foreach(e=> print(e + " "))//6 8 7
9、def distinct(): RDD[T] 将当前RDD进行去重后,返回一个新的RDD
//distinct
var source = sc.parallelize(List(1,1,2,2,3,3,4,4,5,5))
source.collect().foreach(e=> print(e + " "))//1 1 2 2 3 3 4 4 5 5
var sourceMap =source.distinct()
sourceMap.collect().foreach(e=> print(e + " "))//4 2 1 3 5
10、def partitionBy(partitioner: Partitioner): RDD[(K, V)] 根据设置的分区器重新将RDD进行分区,返回新的RDD
//partitionBy
var source = sc.parallelize(List((1,"111"),(2,"222"),(3,"333"),(4,"444")),4)
source.collect().foreach(e=> print(e + " "))
print("分区数:"+source.partitions.size)//(1,111) (2,222) (3,333) (4,444) 分区数:4
var sourceMap = source.partitionBy(new HashPartitioner(2))
sourceMap.collect().foreach(e=> print(e + " "))
print("分区数:"+sourceMap.partitions.size)//(2,222) (4,444) (1,111) (3,333) 分区数:2
11、def reduceByKey(func: (V, V) => V): RDD[(K, V)] 根据Key值将相同Key的元组的值用func进行计算,返回新的RDD
//reduceByKey
var source = sc.parallelize(List(("hello",1),("world",1),("hello",1),("world",1)))
source.collect().foreach(e=> print(e + " "))//(hello,1) (world,1) (hello,1) (world,1)
var sourceMap = source.reduceByKey((x,y)=>x+y)
sourceMap.collect().foreach(e=> print(e + " "))//(hello,2) (world,2)
12、def groupByKey(): RDD[(K, Iterable[V])] 将相同Key的值进行聚集,输出一个(K, Iterable[V])类型的RDD
//groupByKey
var source = sc.parallelize(List(("hello",1),("world",1),("hello",1),("world",1)))
source.collect().foreach(e=> print(e + " "))//(hello,1) (world,1) (hello,1) (world,1)
var sourceMap =source.groupByKey()
sourceMap.collect().foreach(e=> print(e + " "))//(hello,CompactBuffer(1, 1)) (world,CompactBuffer(1, 1))
13、def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, numPartitions: Int): RDD[(K, C)] 根据key分别使用CreateCombiner和mergeValue进行相同key的数值聚集,通过mergeCombiners将各个分区最终的结果进行聚集。
packagetop.ruandbimportorg.apache.spark.{ SparkConf, SparkContext}
object RddTest {
def main(args: Array[String]): Unit={
val sparkConf= new SparkConf().setAppName("RddTest").setMaster("local[2]")
val sc= newSparkContext(sparkConf)//combineByKey 计算平均成绩
var scores = Array(("lucy", 89), ("jack", 77), ("lucy", 100), ("james", 65), ("jack", 99),
("james", 44))
var input=sc.parallelize(scores);
input.collect().foreach(e=> print(e + " "))//(lucy,89) (jack,77) (lucy,100) (james,65) (jack,99) (james,44)
var output = input.combineByKey((v) => (v, 1),
(acc: (Int, Int), v)=> (acc._1 + v, acc._2 + 1),
(acc1: (Int, Int), acc2: (Int, Int))=> (acc1._1 + acc2._1, acc1._2 +acc2._2))
output.collect().foreach(e=> print(e + " "))//(james,(109,2)) (jack,(176,2)) (lucy,(189,2))
var result = output.map{case (key,value) => (key,value._1/value._2.toDouble)}
result.collect().foreach(e=> print(e + " "))//(james,54.5) (jack,88.0) (lucy,94.5)
}
}
14、def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)] 通过seqOp函数将每一个分区里面的数据和初始值迭代带入函数返回最终值,comOp将每一个分区返回的最终值根据key进行合并操作。