"""
现在利用卡尔曼滤波对小车的运动状态进行预测。主要流程如下所示:导入相应的工具包小车运动数据生成参数初始化利用卡尔曼滤波进行小车状态预测可视化:观察参数的变化与结果
"""#导入包
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from filterpy.kalman import KalmanFilter
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"] #支持中文显示
mpl.rcParams["axes.unicode_minus"] = False#小车运动数据生成
#在这里我们假设小车作速度为1的匀速运动
# 生成1000个位置,从1到1000,是小车的实际位置
z = np.linspace(1,1000,1000)
# 添加噪声
mu,sigma = 0,1
noise = np.random.normal(mu,sigma,1000)
# 小车位置的观测值
z_nosie = z+noise#参数初始化
# dim_x 状态向量size,在该例中为[p,v],即位置和速度,size=2
# dim_z 测量向量size,假设小车为匀速,速度为1,测量向量只观测位置,size=1
my_filter = KalmanFilter(dim_x=2, dim_z=1)# 定义卡尔曼滤波中所需的参数
# x 初始状态为[0,0],即初始位置为0,速度为0.
# 这个初始值不是非常重要,在利用观测值进行更新迭代后会接近于真实值
my_filter.x = np.array([[0.], [0.]])# p 协方差矩阵,表示状态向量内位置与速度的相关性
# 假设速度与位置没关系,协方差矩阵为[[1,0],[0,1]]
my_filter.P = np.array([[1., 0.], [0., 1.]])# F 初始的状态转移矩阵,假设为匀速运动模型,可将其设为如下所示
my_filter.F = np.array([[1., 1.], [0., 1.]])# Q 状态转移协方差矩阵,也就是外界噪声,
# 在该例中假设小车匀速,外界干扰小,所以我们对F非常确定,觉得F一定不会出错,所以Q设的很小
my_filter.Q = np.array([[0.0001, 0.], [0., 0.0001]])# 观测矩阵 Hx = p
# 利用观测数据对预测进行更新,观测矩阵的左边一项不能设置成0
my_filter.H = np.array([[1, 0]])
# R 测量噪声,方差为1
my_filter.R = 1#卡尔曼滤波进行预测
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波
for k in range(len(z_nosie)):# 预测过程my_filter.predict()# 利用观测值进行更新my_filter.update(z_nosie[k])# do something with the outputx = my_filter.x# 收集卡尔曼滤波后的速度和位置信息z_new_list.append(x[0][0])v_new_list.append(x[1][0])#可视化
#预测误差的可视化
# 位移的偏差
dif_list = []
for k in range(len(z)):dif_list.append(z_new_list[k]-z[k])
# 速度的偏差
v_dif_list = []
for k in range(len(z)):v_dif_list.append(v_new_list[k]-1)plt.figure(figsize=(20,9))
plt.subplot(1,1,1)
plt.xlim(-50,1050)
plt.ylim(-3.0,3.0)
plt.scatter(range(len(z)),dif_list,color ='b',label = "位置偏差")
plt.scatter(range(len(z)),v_dif_list,color ='y',label = "速度偏差")
plt.legend()
plt.show()#2.卡尔曼滤波器参数的变化
#首先定义方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0,我们看一下参数的变化。
# 定义一个方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0
def filter_comb(p, f, q, h, r):a = np.hstack((p, f))b = np.array([r, 0])b = np.vstack([h, b])b = np.hstack((q, b))a = np.vstack((a, b))return a#对参数变化进行可视化:
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波
for k in range(1):# 预测过程my_filter.predict()# 利用观测值进行更新my_filter.update(z_nosie[k])# do something with the outputx = my_filter.xc = filter_comb(my_filter.P,my_filter.F,my_filter.Q,my_filter.H,my_filter.R)plt.figure(figsize=(32,18))sns.set(font_scale=4)#sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels==False,cbar=False)sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels=False,cbar=False)#从图中可以看出变化的P,其他的参数F,Q,H,R为变换。另外状态变量x和卡尔曼系数K也是变化的。
#3.概率密度函数
#为了验证卡尔曼滤波的结果优于测量的结果,绘制预测结果误差和测量误差的概率密度函数:
# 生成概率密度图像
z_noise_list_std = np.std(noise)
z_noise_list_avg = np.mean(noise)
z_filterd_list_std = np.std(dif_list)import seaborn as sns
plt.figure(figsize=(16,9))
ax = sns.kdeplot(noise,shade=True,color="r",label="std=%.3f"%z_noise_list_std)
ax = sns.kdeplot(dif_list,shade=True,color="g",label="std=%.3f"%z_filterd_list_std)
plt.show()
输出: