将一个java工程导入到myeclipse应该注意的地方

[原文]http://www.cnblogs.com/ht2411/articles/5471130.html

1. 最好新建一个myeclipse工程,然后从从文件系统导入该工程文件。

   原因:很多项目可能是eclipse创建的,或者myeclipse的版本不一致,这样可能导致很多奇怪的现象,因此先在自己的myeclipse中创建项目,导入文件覆盖已经存在的文件可以避免改问题。

2. 设置导入系统的编码格式为UTF-8等。

3. 设置java相关的参数

   · 设置工程的java版本:工程->Properties -> Java Build Path -> Libraries设置jre版本;

   · 工程->Properties -> myeclipse -> Project Facets -> 查看java的版本是否一致,如果是web项目,查看Dynamic Web Module的版本。

   · 工程->Properties -> myeclipse -> Deployment Assembly -> 查看各个模块在web服务器下的部署路径是否正确:

   

4. 设置web服务器,例如tomcat的按照目录,并设置tomcat运行的java版本

   · windows -> preferences -> Myeclipses -> servers -> tomcat -> Tomcat 6.x, 填写tomcat的路径,选择enable。进入子目录JDK, 选择tomcat的运行jdk版本。

   · 将工程发布到tomcat中,并查看webapps下面工程中的文件是否正确。

     注意:如果没有做第一步,可能导致jsp,js等页面无法拷贝到tomcat中。

5. 要修改myeclipse中工程名称:项目 -> Refactor -> Rename; 要修改部署到tomcat中的目录名称(也是最后url中的项目名称):项目 -> Properties -> Myeclipse -> Web, 其中Web Context-root是部署到tomcat的webapps下面的目录名;Web-root folder就是项目的web目录,将该目录下的东西拷贝到前面的目录下。

   注意:可以理解为myeclipse的部署,实际上就是根据上面两个路径配置进行文件拷贝。

6. 如果你的工程中的javascript提示校验报错,项目 -> Myeclipse -> Exclude From Validation

    在项目 -> Properties -> Builders, 再去掉Javascript Validator, 哪个报错就去掉哪个,例如: DeploymentDescriptorValidator等;但最好查查原因。

 

暂时考虑到这些,等想到了再添加。

转载于:https://www.cnblogs.com/xttc/p/6476586.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469304.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Pytorch神经网络理论篇】 25 基于谱域图神经网络GNN:基础知识+GNN功能+矩阵基础+图卷积神经网络+拉普拉斯矩阵

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络基础理论篇】 07 线性回归 + 基础优化算法

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

浅谈命令查询职责分离(CQRS)模式

在常用的三层架构中,通常都是通过数据访问层来修改或者查询数据,一般修改和查询使用的是相同的实体。在一些业务逻辑简单的系统中可能没有什么问题,但是随着系统逻辑变得复杂,用户增多,这种设计就会出现一些性能问题。…

【Pytorch神经网络实战案例】20 基于Cora数据集实现图卷积神经网络论文分类

1 案例说明(图卷积神经网络) CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的…

mybatis基础学习3---特殊sql语句(备忘)

1: 2: 3:resultMap的用法 转载于:https://www.cnblogs.com/kaiwen/p/6486283.html

【Pytorch神经网络实战案例】21 基于Cora数据集实现Multi_Sample Dropout图卷积网络模型的论文分类

Multi-sample Dropout是Dropout的一个变种方法,该方法比普通Dropout的泛化能力更好,同时又可以缩短模型的训练时间。XMuli-sampleDropout还可以降低训练集和验证集的错误率和损失,参见的论文编号为arXⅳ:1905.09788,2019 1 实例说明 本例就…

【Pytorch神经网络理论篇】 26 基于空间域的图卷积GCNs(ConvGNNs):定点域+谱域+图卷积的操作步骤

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

Linux设备驱动之mmap设备操作

1.mmap系统调用 void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset); 功能:负责把文件内容映射到进程的虚拟地址空间,通过对这段内存的读取和修改来实现对文件的读取和修改,而不需要再调用read和write&#xff…

hadoop安装以及Java API操作hdfs

因为工作需求,需要我这边实现一个大文件上传到HDFS的功能,因为本机无法连接公司内网的集群,无奈只好自己动手搭建一个单节点的Hadoop来满足工作的需求。下面简单介绍下安装过程中遇到的坑我的机器是阿里云的最低配 安装文件:hadoo…

【Pytorch神经网络理论篇】 27 图神经网络DGL库:简介+安装+卸载+数据集+PYG库+NetWorkx库

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 28 DGLGraph图的基本操作(缺一部分 明天补)

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 29 图卷积模型的缺陷+弥补方案

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络实战案例】22 基于Cora数据集实现图注意力神经网络GAT的论文分类

注意力机制的特点是,它的输入向量长度可变,通过将注意力集中在最相关的部分来做出决定。注意力机制结合RNN或者CNN的方法。 1 实战描述 【主要目的:将注意力机制用在图神经网络中,完成图注意力神经网络的结构和搭建】 1.1 实现…

用OC和Swift一起说说二叉树

前言: 一:在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。二&#xf…

【Pytorch神经网络理论篇】 30 图片分类模型:Inception模型

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 31 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型

同学你好!本文章于2021年末编写,获得广泛的好评! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)目录地址…

【Pytorch神经网络理论篇】 32 PNASNet模型:深层可分离卷积+组卷积+空洞卷积

1 PNASNet模型简介 PNASNet模型是Google公司的AutoML架构自动搜索所产生的模型,它使用渐进式网络架构搜索技术,并通过迭代自学习的方式,来寻找最优网络结构。即用机器来设计机器学习算法,使得它能够更好地服务于用户提供的数据。该…

s5k5e2ya MIPI 摄像头调试

1、驱动移植的话按照我之前的文章来做 驱动里面注意是几路的lane,一般mipi的话是差分信号,2路和4路是比较常见的。2、mipi波形 很明显上面的波形是不正确的。dp dn有一个都成了正弦波了。 首先,我们要找一下正确的波形 正确的波形应该是DP和DN不会同时…

【Pytorch神经网络实战案例】23 使用ImagNet的预训练模型识别图片内容

1 案例基本工具概述 1.1 数据集简介 Imagenet数据集共有1000个类别,表明该数据集上的预训练模型最多可以输出1000种不同的分类结果。 Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据…

杂谈转载

一、什么是运行时(Runtime)? 运行时是苹果提供的纯C语言的开发库(运行时是一种非常牛逼、开发中经常用到的底层技术)二、运行时的作用? 能获得某个类的所有成员变量能获得某个类的所有属性能获得某个类的所有方法交换…