PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路

完整代码:

import torch
import torchvision
from PIL import Image
from torch import nnimage_path = "../imgs/dog.png"
image = Image.open(image_path)
print(image)# 因为png格式是四个通道,除了RGB三通道外,还有一个透明度通道
image = image.convert("RGB")
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)class MyNN(nn.Module):def __init__(self):super(MyNN, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xmodel = torch.load("mynn_0.pth")
print(model)image = torch.reshape(image,(1,3,32,32))
model.eval()with torch.no_grad():output = model(image.cuda())
print(output)
print(output.argmax(1))

 采用GPU训练的模型,两种方法

(1)在CPU上加载,要从GPU映射到CPU,即把model = torch.load("mynn_9.pth")改为:

model = torch.load("mynn_9.pth",map_location=torch.device('cpu'))

(2)将image转到GPU中,即把output = model(image)改为:

output = model(image.cuda())

 

 预测错误的原因可能是训练次数不够多

 改成:

model = torch.load("mynn_9.pth")

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/45544.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

字符设备驱动实例(ADC驱动)

四、ADC驱动 ADC是将模拟信号转换为数字信号的转换器,在 Exynos4412 上有一个ADC,其主要的特性如下。 (1)量程为0~1.8V。 (2)精度有 10bit 和 12bit 可选。 (3)采样时钟最高为5MHz,转换速率最高为1MSPS (4)具有四路模拟输入,同一时…

差值结构的复合底部

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点,AB训练集各由6张二值化的图片组成,让A 中有3个点,B中有1个点,且不重合,统计迭代次数并排序。 其中有20组数据 让迭代次数与排斥能成反比,排…

第 7 章 排序算法(3)(选择排序)

7.6选择排序 7.6.1基本介绍 选择式排序也属于内部排序法,是从欲排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。 7.6.2选择排序思想: 选择排序(select sorting)也是一种简单的排序方法…

装饰器读取不到被装饰函数的参数-已解决

def write_case_log(func):def wrapper(*args, **kwargs):logger.info("{}开始执行".format(func.__name__))func(*args,**kwargs)logger.info("{}执行中".format(args))logger.info("{}执行结束",format(func.__name__))return wrapper被装饰函…

每天一道leetcode:剑指 Offer 34. 二叉树中和为某一值的路径(中等图论深度优先遍历递归)

今日份题目: 给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例1 输入:root [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSu…

PyCharm连接Docker中的容器(ubuntu)

一、为什么要用Pycharm链接Docker中的ubuntu 因为在进行深度学习的时候,基于windows系统在开发的过程中,老是出现很多问题,大多数是环境问题。 尽管安装了Conda,也不能很好的解决问题,使用ubuntu是最好的选择。 二、…

docker基础

本地安装 ①卸载旧版 sudo yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-engine podman runc 保证虚机无安装包冲突 ②在新主机上首次安装 Docker 引擎之前,您需…

运行flutter doctor命令窗口直接闪退

在cmd中输入flutter doctor后闪退了。 使用高速摄像机可以看到报错信息。 报错信息的意思是git的文件夹不能删掉,请保留flutter中git文件。

[机器学习]特征工程:主成分分析

目录 主成分分析 1、简介 2、帮助理解 3、API调用 4、案例 本文介绍主成分分析的概述以及python如何实现算法,关于主成分分析算法数学原理讲解的文章,请看这一篇: 探究主成分分析方法数学原理_逐梦苍穹的博客-CSDN博客https://blog.csdn.…

css 实现电梯导航

实现原理&#xff1a;利用css实现电梯导航很简单&#xff0c;基本原理就是通过a标签绑定跳转目标的id来实现的 html代码&#xff1a; <div class"body"><div class"top" id"top"></div><div class"con1" id"…

线性代数的学习和整理5: 矩阵的加减乘除及其几何意义(未完成,建设ing)

目录 1 矩阵加法 1.1 矩阵加法的定义 1.2 加法的属性 1.2.1 只有同类型&#xff0c;相同n*m的矩阵才可以相加 1.2.1 矩阵加法的可交换律&#xff1a; 1.2.2 矩阵加法的可结合律&#xff1a; 1.3矩阵加法的几何意义 2 矩阵的减法 2.1 矩阵减法定义和原理基本同 矩阵的…

Linux命令200例:tail用来显示文件的末尾内容(常用)

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌。CSDN专家博主&#xff0c;阿里云社区专家博主&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &…

HCIP之VLAN实验

目录 一、实验题目 二、实验思路 三、实验步骤 3.1 将接口划入vlan&#xff0c;设置trunk干道 3.2 启动DHCP服务&#xff0c;下发地址 四、测试 一、实验题目 实验要求&#xff1a; 1&#xff0c;PC1/3的接口均为access模式&#xff0c;且属于vlan2&#xff0c;处于同一…

NLP中的RNN、Seq2Seq与attention注意力机制

目录 NLP自然语言处理 的RNN、Seq2Seq与attention注意力机制 RNN循环神经网络 前馈网络入门 前馈网络 循环网络 多层感知器架构示例 循环神经网络的运作原理 展开 RNN seq2seq模型 Attention&#xff08;注意力机制&#xff09; 总结 引用 NLP自然语言处理 的RNN、…

Ubuntu20.04搭建OpenGL环境(glfw+glad)

Ubuntu20.04搭建OpenGL环境(glfwglad) Linux环境搭建 本文在VMware安装Ubuntu20.04桌面版的环境下搭建OpenGL&#xff0c;按照本文搭建完成后可以执行LearnOpenGL网站上的demo。 关于VMware可自行到VMware Workstation Pro | CN下载 关于Ubuntu20.04桌面版可自行到官网或In…

轮腿机器人的PID控制

1 PID介绍 PID&#xff08;Proportional Integral Derivative&#xff09;控制系统。其实质是根据输入的偏差值&#xff0c;按比例、积分、微分的函数关系进行运算&#xff0c;运算结果用以输出进行控制。它是在长期的工程实践中总结出来的一套控制方法&#xff0c;实际运行经…

【C++】做一个飞机空战小游戏(十一)——游戏过关、通关、结束的设置

[导读]本系列博文内容链接如下&#xff1a; 【C】做一个飞机空战小游戏(一)——使用getch()函数获得键盘码值 【C】做一个飞机空战小游戏(二)——利用getch()函数实现键盘控制单个字符移动【C】做一个飞机空战小游戏(三)——getch()函数控制任意造型飞机图标移动 【C】做一个飞…

STM32F4X USART串口使用

STM32F4X USART串口使用 串口概念起始位波特率数据位停止位校验位串口间接线 STM32F4串口使用步骤GPIO引脚复用函数串口初始化函数串口例程 串口概念 串口是MCU与外部通信的重要通信接口&#xff0c;也是MCU在开发过程中的调试利器。串口通信有几个重要的参数&#xff0c;分别…

【Linux】进程信号篇Ⅰ:信号的产生(signal、kill、raise、abort、alarm)、信号的保存(core dump)

文章目录 一、 signal 函数&#xff1a;用户自定义捕捉信号二、信号的产生1. 通过中断按键产生信号2. 调用系统函数向进程发信号2.1 kill 函数&#xff1a;给任意进程发送任意信号2.2 raise 函数&#xff1a;给调用进程发送任意信号2.3 abort 函数&#xff1a;给调用进程发送 6…

CloudQuery:更好地管理你的 OceanBase 数据库

前言&#xff1a;作为 OceanBase 的生态合作伙伴&#xff0c;CloudQuery&#xff08;简称“CQ”&#xff09; 最新发布的社区版 2.2.0 新增了 OceanBase 数据库&#xff0c;为企业使用 OceanBase 数据库提供全面的支持。包括连接与认证、查询与分析、数据安全与权限管理&#x…