【CodeForces - 689D】Friends and Subsequences(RMQ,二分 或单调队列)

题干:

Mike and !Mike are old childhood rivals, they are opposite in everything they do, except programming. Today they have a problem they cannot solve on their own, but together (with you) — who knows?

Every one of them has an integer sequences a and b of length n. Being given a query of the form of pair of integers (l, r), Mike can instantly tell the value of while !Mike can instantly tell the value of .

Now suppose a robot (you!) asks them all possible different queries of pairs of integers (l, r) (1 ≤ l ≤ r ≤ n) (so he will make exactly n(n + 1) / 2 queries) and counts how many times their answers coincide, thus for how many pairs is satisfied.

How many occasions will the robot count?

Input

The first line contains only integer n (1 ≤ n ≤ 200 000).

The second line contains n integer numbers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the sequence a.

The third line contains n integer numbers b1, b2, ..., bn ( - 109 ≤ bi ≤ 109) — the sequence b.

Output

Print the only integer number — the number of occasions the robot will count, thus for how many pairs  is satisfied.

Examples

Input

6
1 2 3 2 1 4
6 7 1 2 3 2

Output

2

Input

3
3 3 3
1 1 1

Output

0

Note

The occasions in the first sample case are:

1.l = 4,r = 4 since max{2} = min{2}.

2.l = 4,r = 5 since max{2, 1} = min{2, 3}.

There are no occasions in the second sample case since Mike will answer 3 to any query pair, but !Mike will always answer 1.

题目大意:

给你两个大小为n的数组a1,2,3,…n和b1,2,3,….n, 问你有多少个区间[l,r](1<=l<=r<=n), 使得max{al,al+1,al+2….,ar}和min{bl,bl+1,bl+2….,br}的值相等。

解题报告:

因为max随着区间的增加,具有单调不减的性质,min同理。所以我们可以枚举左端点,通过二分来确定右端点的一段合法区间。最后统计答案即可。

AC代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<set>
#include<string>
#include<cmath>
#include<cstring>
#define FF first
#define SS second
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
typedef pair<int,int> PII;
const int MAX = 2e5 + 5;
int n;
int a[MAX],b[MAX],Log[MAX];
int A[MAX][33],B[MAX][33];
void ST() {for(int i = 1; i<=n; i++) A[i][0] = a[i],B[i][0] = b[i];for(int j = 1; (1<<j)<=n; j++) {for(int i = 1; i+(1<<j)-1<=n; i++) {A[i][j] = max(A[i][j-1],A[i+(1<<j-1)][j-1]);B[i][j] = min(B[i][j-1],B[i+(1<<j-1)][j-1]);}}		
}
int aMax(int l,int r) {int k = Log[r-l+1];return max(A[l][k],A[r-(1<<k)+1][k]);
}
int bMin(int l,int r) {int k = Log[r-l+1];return min(B[l][k],B[r-(1<<k)+1][k]);
}
int ans;
int main()
{for(int i = 2; i<MAX; i++) Log[i] = Log[i>>1] + 1;cin>>n;for(int i = 1; i<=n; i++) cin>>a[i];for(int i = 1; i<=n; i++) cin>>b[i];ST();for(int i = 1; i<=n; i++) {int l = i,r = n,mid,ans1=-1,ans2=0,Mx,Mn;while(l<=r) {mid = (l+r)>>1;Mx=aMax(i,mid),Mn=bMin(i,mid);if(Mx == Mn) ans1 = mid,l = mid+1;else if(Mx>Mn) r = mid-1;else l = mid+1; }l = i,r = ans1;while(l<=r) {mid = (l+r)>>1;if(aMax(i,mid) == bMin(i,mid)) ans2 = mid,r = mid-1;else l = mid+1;}ans += ans1-ans2+1;}cout << ans << endl;return 0 ;
}

甚至这题还可以用On的单调队列来写:

#include <bits/stdc++.h>
using namespace std;int n, a[200001], b[200001];
long long ans;
deque<int> mx, mn;
int main() {scanf("%d",&n);for(int i = 1; i <= n; i++) scanf("%d", &a[i]);for(int i = 1; i <= n; i++) scanf("%d", &b[i]);for(int i = 1, j = 1; i <= n; i++) {while(!mx.empty() and a[mx.back()] <= a[i]) mx.pop_back();while(!mn.empty() and b[mn.back()] >= b[i]) mn.pop_back();mx.push_back(i);mn.push_back(i);while(j <= i and a[mx.front()] - b[mn.front()] > 0) {j++;while(!mx.empty() and mx.front() < j) mx.pop_front();while(!mn.empty() and mn.front() < j) mn.pop_front();}if(!mx.empty() and !mn.empty() and a[mx.front()] == b[mn.front()]) ans += min(mx.front(), mn.front()) - j + 1;}printf("%lld", ans);
}

总结:

注意别直接这么写了:

for(int i = 1; i<=n; i++) {int l = i,r = n,mid,ans1=-1,ans2=0;while(l<=r) {mid = (l+r)>>1;if(aMax(i,mid) == bMin(i,mid)) ans1 = mid,l = mid+1;else r = mid-1; }l = i,r = ans1;while(l<=r) {mid = (l+r)>>1;if(aMax(i,mid) == bMin(i,mid)) ans2 = mid,r = mid-1;else l = mid+1;}ans += ans1-ans2+1;}

因为他不一定从i开始都是满足的,所以你求右端点的右边界的时候必须要分三种情况讨论。但是求左边界的时候就无所谓了。

不好理解的话可以画个图,假设一段区间的RMQ如图所示:(但是注意这不代表答案只是包含一段区间,因为可能有多段这样的图形出现。。。但是用单调队列还是没有问题的、注意维护值域的时候的判断条件)

枚举到以i为左端点时,我们要求的右端点的左右边界是l和r,所以二分的时候也要舍弃i~l这一段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439855.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6.深度学习练习:Initialization

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Neural Network model 2 - Zero initialization 3 - Random initialization&#xff08;掌握&…

Java Object类的各个方法

Java中所有的类都继承自java.lang.Object类&#xff0c;Object类中一共有11个方法&#xff1a; public final native Class<?> getClass();public native int hashCode();public boolean equals(Object obj) {return (this obj); }protected native Object clone() th…

【CodeForces - 602D】Lipshitz Sequence(思维,单调栈,斜率单调性)

题干&#xff1a; A function is called Lipschitz continuous if there is a real constant Ksuch that the inequality |f(x) - f(y)| ≤ K|x - y| holds for all . Well deal with a more... discrete version of this term. For an array , we define its Lipschi…

7.深度学习练习:Regularization

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1-Package 2 - Non-regularized model 3 - L2 Regularization&#xff08;掌握&#xff09; 4-Dropou…

深入详解JVM内存模型与JVM参数详细配置

本系列会持续更新。 JVM基本是BAT面试必考的内容&#xff0c;今天我们先从JVM内存模型开启详解整个JVM系列&#xff0c;希望看完整个系列后&#xff0c;可以轻松通过BAT关于JVM的考核。 BAT必考JVM系列专题 1.JVM内存模型 2.JVM垃圾回收算法 3.JVM垃圾回收器 4.JVM参数详解 5…

【2019牛客暑期多校训练营(第三场)- A】Graph Games(思维,对边分块)

题干&#xff1a; 链接&#xff1a;https://ac.nowcoder.com/acm/contest/883/A 来源&#xff1a;牛客网 You are given an undirected graph with N\ N N vertices and M\ M M edges. The edges are numbered from 1\ 1 1 to M\ M M . Denote the set S(x)\ S(x) S…

8.深度学习练习:Gradient Checking

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1) How does gradient checking work? 2) 1-dimensional gradient checking 3) N-dimensional gradie…

苹果手机看电流判断故障

正常的开机电流 1、按开机键后电流在40mA摆动一下&#xff08;CPU供电正常&#xff09;&#xff1b; 2、到80mA左右摆动一下&#xff08;暂存开始工作&#xff0c;也就是CPU上盖&#xff0c;然后开始进行总线的初始化&#xff09;&#xff1b; 3、指针到120mA左右摆动&#xff…

【CodeForces - 675C】Money Transfers(思维,前缀和)

题干&#xff1a; There are n banks in the city where Vasya lives, they are located in a circle, such that any two banks are neighbouring if their indices differ by no more than 1. Also, bank 1 and bank n are neighbours if n > 1. No bank is a neighbou…

9.深度学习练习:Optimization Methods

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Gradient Descent 2 - Mini-Batch Gradient descent 3 - Momentum 4 - Adam 5 - Model with dif…

一步步编写操作系统 22 硬盘操作方法

硬盘中的指令很多&#xff0c;各指令的用法也不同。有的指令直接往command寄存器中写就行了&#xff0c;有的还要在feature寄存器中写入参数&#xff0c;最权威的方法还是要去参考ATA手册。由于本书中用到的都是简单的指令&#xff0c;所以对此抽象出一些公共的步骤仅供参考之用…

10.深度学习练习:Convolutional Neural Networks: Step by Step(强烈推荐)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Packages 2 - Outline of the Assignment 3 - Convolutional Neural Networks 3.1 - Zero-Paddin…

【HDU - 2639】Bone Collector II (第K大背包,dp,STLset)

题干&#xff1a; The title of this problem is familiar,isnt it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you havent seen it before,it doesnt matter,I will give you a link: Here is the link: http…

一步步编写操作系统 23 重写主引导记录mbr

本节我们在之前MBR的基础上&#xff0c;做个稍微大一点的改进&#xff0c;经过这个改进后&#xff0c;我们的MBR可以读取硬盘。听上去这可是个大“手术”呢&#xff0c;我们要将之前学过的知识都用上啦。其实没那么大啦&#xff0c;就是加了个读写磁盘的函数而已&#xff0c;哈…

11.深度学习练习:Keras tutorial - the Happy House(推荐)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ Welcome to the first assignment of week 2. In this assignment, you will: Learn to use Keras, a high-lev…

【HDU - 5014】Number Sequence(贪心构造)

题干&#xff1a; There is a special number sequence which has n1 integers. For each number in sequence, we have two rules: ● a i ∈ [0,n] ● a i ≠ a j( i ≠ j ) For sequence a and sequence b, the integrating degree t is defined as follows(“♁” deno…

一步步编写操作系统 24 编写内核加载器

这一节的内容并不长&#xff0c;因为在进入保护模式之前&#xff0c;我们能做的不多&#xff0c;loader是要经过实模式到保护模式的过渡&#xff0c;并最终在保护模式下加载内核。本节只实现一个简单的loader&#xff0c;本loader只在实模式下工作&#xff0c;等学习了保护模式…

12.深度学习练习:Residual Networks(注定成为经典)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - The problem of very deep neural networks 2 - Building a Residual Network 2.1 - The identity…

【HDU - 5869】Different GCD Subarray Query(思维,数学,gcd,离线处理,查询区间不同数,树状数组 或 二分RMQ)

题干&#xff1a; This is a simple problem. The teacher gives Bob a list of problems about GCD (Greatest Common Divisor). After studying some of them, Bob thinks that GCD is so interesting. One day, he comes up with a new problem about GCD. Easy as it look…

13.深度学习练习:Autonomous driving - Car detection(YOLO实战)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ Welcome to your week 3 programming assignment. You will learn about object detection using the very pow…