10.深度学习练习:Convolutional Neural Networks: Step by Step(强烈推荐)

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。

课程链接:https://www.deeplearning.ai/deep-learning-specialization/

目录

1 - Packages

2 - Outline of the Assignment

3 - Convolutional Neural Networks

3.1 - Zero-Padding

3.2 - Single step of convolution

3.3 - Convolutional Neural Networks - Forward pass

4 - Pooling layer

4.1 - Forward Pooling


Welcome to Course 4's first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation.

Notation:

Superscript [?] denotes an object of the l^{th} layer.

  • Example: a^{[4]}is the 4^{th} layer activation. W^{[5]}and b^{[5]}are the 5^{th}layer parameters

Superscript (?)  denotes an object from the i^{th}example.

  • Example: x^{(i)} is the i^{th}training example input.

Lowerscript ?  denotes the ??ℎ entry of a vector.

  • Example: a^{[l]}_idenotes the i^{th}entry of the activations in layer ?.  assuming this is a fully connected (FC) layer.

n_H, n_W and  n_Cdenote respectively the height, width and number of channels of a given layer. If you want to reference a specific layer ?, you can also write n^{[l]}_H,n^{[l]}_W,n^{[l]}_C.

n_{Hprev}?_{?????},  n_{Wprev} andn_{Cprev} denote respectively the height, width and number of channels of the previous layer. If referencing a specific layer ?, this could also be denotedn^{[l-1]}_H ,n^{[l-1]}_W,n^{[l-1]}_C.


1 - Packages

import numpy as np
import h5py
import matplotlib.pyplot as plt%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'%load_ext autoreload
%autoreload 2np.random.seed(1)

2 - Outline of the Assignment

You will be implementing the building blocks of a convolutional neural network! Each function you will implement will have detailed instructions that will walk you through the steps needed:

  • Convolution functions, including:
    • Zero Padding
    • Convolve window
    • Convolution forward
    • Convolution backward (optional)
  • Pooling functions, including:
    • Pooling forward
    • Create mask
    • Distribute value
    • Pooling backward (optional)

This notebook will ask you to implement these functions from scratch in numpy. In the next notebook, you will use the TensorFlow equivalents of these functions to build the following model:

Note that for every forward function, there is its corresponding backward equivalent. Hence, at every step of your forward module you will store some parameters in a cache. These parameters are used to compute gradients during backpropagation.


3 - Convolutional Neural Networks

Although programming frameworks make convolutions easy to use, they remain one of the hardest concepts to understand in Deep Learning. A convolution layer transforms an input volume into an output volume of different size, as shown below.

In this part, you will build every step of the convolution layer. You will first implement two helper functions: one for zero padding and the other for computing the convolution function itself.

3.1 - Zero-Padding

Zero-padding adds zeros around the border of an image:

The main benefits of padding are the following:

  • It allows you to use a CONV layer without necessarily shrinking the height and width of the volumes. This is important for building deeper networks, since otherwise the height/width would shrink as you go to deeper layers. An important special case is the "same" convolution, in which the height/width is exactly preserved after one layer.

  • It helps us keep more of the information at the border of an image. Without padding, very few values at the next layer would be affected by pixels as the edges of an image.

Exercise: Implement the following function, which pads all the images of a batch of examples X with zeros. Use np.pad. Note if you want to pad the array "a" of shape (5,5,5,5,5)

with pad = 1 for the 2nd dimension, pad = 3 for the 4th dimension and pad = 0 for the rest, you would do:

a = np.pad(a, ((0,0), (1,1), (0,0), (3,3), (0,0)), 'constant', constant_values = (..,..))
# GRADED FUNCTION: zero_paddef zero_pad(X, pad):"""Pad with zeros all images of the dataset X. The padding is applied to the height and width of an image, as illustrated in Figure 1.Argument:X -- python numpy array of shape (m, n_H, n_W, n_C) representing a batch of m imagespad -- integer, amount of padding around each image on vertical and horizontal dimensionsReturns:X_pad -- padded image of shape (m, n_H + 2*pad, n_W + 2*pad, n_C)"""X_pad = np.pad(X, ((0,0), (pad, pad), (pad, pad), (0,0)), 'constant', constant_values = 0)return X_pad

3.2 - Single step of convolution

In this part, implement a single step of convolution, in which you apply the filter to a single position of the input. This will be used to build a convolutional unit, which:

  • Takes an input volume
  • Applies a filter at every position of the input
  • Outputs another volume (usually of different size)

In a computer vision application, each value in the matrix on the left corresponds to a single pixel value, and we convolve a 3x3 filter with the image by multiplying its values element-wise with the original matrix, then summing them up. In this first step of the exercise, you will implement a single step of convolution, corresponding to applying a filter to just one of the positions to get a single real-valued output.

Later in this notebook, you'll apply this function to multiple positions of the input to implement the full convolutional operation.

Exercise: Implement conv_single_step(). Hint.

def conv_single_step(a_slice_prev, W, b):"""Apply one filter defined by parameters W on a single slice (a_slice_prev) of the output activation of the previous layer.Arguments:a_slice_prev -- slice of input data of shape (f, f, n_C_prev)W -- Weight parameters contained in a window - matrix of shape (f, f, n_C_prev)b -- Bias parameters contained in a window - matrix of shape (1, 1, 1)Returns:Z -- a scalar value, result of convolving the sliding window (W, b) on a slice x of the input data"""s = np.multiply(a_slice_prev, W) + bZ= np.sum(s)return Z

3.3 - Convolutional Neural Networks - Forward pass

In the forward pass, you will take many filters and convolve them on the input. Each 'convolution' gives you a 2D matrix output. You will then stack these outputs to get a 3D volume:

Exercise: Implement the function below to convolve the filters W on an input activation A_prev. This function takes as input A_prev, the activations output by the previous layer (for a batch of m inputs), F filters/weights denoted by W, and a bias vector denoted by b, where each filter has its own (single) bias. Finally you also have access to the hyperparameters dictionary which contains the stride and the padding.

Hint:

  1. To select a 2x2 slice at the upper left corner of a matrix "a_prev" (shape (5,5,3)), you would do:
    a_slice_prev = a_prev[0:2,0:2,:]
    This will be useful when you will define a_slice_prev below, using the start/end indexes you will define.
  2. To define a_slice you will need to first define its corners vert_start, vert_end, horiz_start and horiz_end. This figure may be helpful for you to find how each of the corner can be defined using h, w, f and s in the code below.

Reminder: The formulas relating the output shape of the convolution to the input shape is:

                                                          $$ n_H = \lfloor \frac{n_{H_{prev}} - f + 2 \times pad}{stride} \rfloor +1 $$

                                                         $$ n_W = \lfloor \frac{n_{W_{prev}} - f + 2 \times pad}{stride} \rfloor +1 $$

                                            $$ n_C = \text{number of filters used in the convolution}$$

# GRADED FUNCTION: conv_forwarddef conv_forward(A_prev, W, b, hyparameters):"""Implements the forward propagation for a convolution functionArguments:A_prev -- output activations of the previous layer, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)W -- Weights, numpy array of shape (f, f, n_C_prev, n_C)b -- Biases, numpy array of shape (1, 1, 1, n_C)hyparameters -- python dictionary containing "stride" and "pad"Returns:Z -- conv output, numpy array of shape (m, n_H, n_W, n_C)cache -- cache of values needed for the conv_backward() function"""### START CODE HERE #### Retrieve dimensions from A_prev's shape (≈1 line)  (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape# Retrieve dimensions from W's shape (≈1 line)#(f, f, n_C_prev, n_C) = W.shape(f, f, n_C_prev, n_C) = W.shape# Retrieve information from "hparameters" (≈2 lines)stride = hyparameters['stride']pad = hyparameters['pad']# Compute the dimensions of the CONV output volume using the formula given above. Hint: use int() to floor. (≈2 lines)n_H = 1 + int((n_H_prev + 2 * pad - f) / stride)n_W = 1 + int((n_W_prev + 2 * pad - f) / stride)# Initialize the output volume Z with zeros. (≈1 line)Z = np.zeros((m, n_H, n_W, n_C))# Create A_prev_pad by padding A_prevA_prev_pad = zero_pad(A_prev, pad)for i in range(m):                               # loop over the batch of training examplesa_prev_pad = A_prev_pad[i]                               # Select ith training example's padded activationfor h in range(n_H):                           # loop over vertical axis of the output volumefor w in range(n_W):                       # loop over horizontal axis of the output volumefor c in range(n_C):                   # loop over channels (= #filters) of the output volume# Find the corners of the current "slice" (≈4 lines)vert_start = h * stridevert_end = vert_start + fhoriz_start = w * stridehoriz_end = w * stride + f# Use the corners to define the (3D) slice of a_prev_pad (See Hint above the cell). (≈1 line)a_slice_prev = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :]# Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (≈1 line)Z[i, h, w, c] = np.sum(np.multiply(a_slice_prev, W[:, :, :, c]) + b[:, :, :, c])# Making sure your output shape is correctassert(Z.shape == (m, n_H, n_W, n_C))# Save information in "cache" for the backpropcache = (A_prev, W, b, hparameters)return Z, cache

4 - Pooling layer

The pooling (POOL) layer reduces the height and width of the input. It helps reduce computation, as well as helps make feature detectors more invariant to its position in the input. The two types of pooling layers are:

  • Max-pooling layer: slides an (?,?) window over the input and stores the max value of the window in the output.

  • Average-pooling layer: slides an (?,?) window over the input and stores the average value of the window in the output.

These pooling layers have no parameters for backpropagation to train. However, they have hyperparameters such as the window size ?. This specifies the height and width of the fxf window you would compute a max or average over.

4.1 - Forward Pooling

Now, you are going to implement MAX-POOL and AVG-POOL, in the same function.

Exercise: Implement the forward pass of the pooling layer. Follow the hints in the comments below.

Reminder: As there's no padding, the formulas binding the output shape of the pooling to the input shape is:

                                                                  $$ n_H = \lfloor \frac{n_{H_{prev}} - f}{stride} \rfloor +1 $$

                                                                  $$ n_W = \lfloor \frac{n_{W_{prev}} - f}{stride} \rfloor +1 $$

                                                                                    $$ n_C = n_{C_{prev}}$$

# GRADED FUNCTION: pool_forwarddef pool_forward(A_prev, hyparameters, mode = "max"):"""Implements the forward pass of the pooling layerArguments:A_prev -- Input data, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)hyparameters -- python dictionary containing "f" and "stride"mode -- the pooling mode you would like to use, defined as a string ("max" or "average")Returns:A -- output of the pool layer, a numpy array of shape (m, n_H, n_W, n_C)cache -- cache used in the backward pass of the pooling layer, contains the input and hparameters """# Retrieve dimensions from the input shape(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape# Retrieve hyperparameters from "hparameters"f = hyparameters["f"]stride = hyparameters["stride"]# Define the dimensions of the outputn_H = int(1 + (n_H_prev - f) / stride)n_W = int(1 + (n_W_prev - f) / stride)n_C = n_C_prev# Initialize output matrix AA = np.zeros((m, n_H, n_W, n_C))              ### START CODE HERE ###for i in range(m):                         # loop over the training examplesfor h in range(n_H):                     # loop on the vertical axis of the output volumefor w in range(n_W):                 # loop on the horizontal axis of the output volumefor c in range (n_C):            # loop over the channels of the output volume# Find the corners of the current "slice" (≈4 lines)vert_start = h * stridevert_end = vert_start + fhoriz_start = w * stridehoriz_end = horiz_start + f# Use the corners to define the current slice on the ith training example of A_prev, channel c. (≈1 line)a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c]# Compute the pooling operation on the slice. Use an if statment to differentiate the modes. Use np.max/np.mean.if mode == "max":A[i, h, w, c] = np.max(a_prev_slice)#A[i, h, w, c] = np.max(a_prev_slice)elif mode == "average":A[i, h, w, c] = np.mean(a_prev_slice)### END CODE HERE #### Store the input and hparameters in "cache" for pool_backward()cache = (A_prev, hyparameters)# Making sure your output shape is correctassert(A.shape == (m, n_H, n_W, n_C))return A, cache

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439843.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一步步编写操作系统 23 重写主引导记录mbr

本节我们在之前MBR的基础上,做个稍微大一点的改进,经过这个改进后,我们的MBR可以读取硬盘。听上去这可是个大“手术”呢,我们要将之前学过的知识都用上啦。其实没那么大啦,就是加了个读写磁盘的函数而已,哈…

11.深度学习练习:Keras tutorial - the Happy House(推荐)

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ Welcome to the first assignment of week 2. In this assignment, you will: Learn to use Keras, a high-lev…

一步步编写操作系统 24 编写内核加载器

这一节的内容并不长,因为在进入保护模式之前,我们能做的不多,loader是要经过实模式到保护模式的过渡,并最终在保护模式下加载内核。本节只实现一个简单的loader,本loader只在实模式下工作,等学习了保护模式…

12.深度学习练习:Residual Networks(注定成为经典)

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - The problem of very deep neural networks 2 - Building a Residual Network 2.1 - The identity…

13.深度学习练习:Autonomous driving - Car detection(YOLO实战)

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ Welcome to your week 3 programming assignment. You will learn about object detection using the very pow…

14.深度学习练习:Face Recognition for the Happy House

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ Welcome to the first assignment of week 4! Here you will build a face recognition system. Many of the i…

java Integer 源码学习

转载自http://www.hollischuang.com/archives/1058 Integer 类在对象中包装了一个基本类型 int 的值。Integer 类型的对象包含一个 int 类型的字段。 此外,该类提供了多个方法,能在 int 类型和 String 类型之间互相转换,还提供了处理 int 类…

15.深度学习练习:Deep Learning Art: Neural Style Transfer

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Problem Statement 2 - Transfer Learning 3 - Neural Style Transfer 3.1 - Computing the cont…

【2018icpc宁夏邀请赛现场赛】【Gym - 102222F】Moving On(Floyd变形,思维,离线处理)

https://nanti.jisuanke.com/t/41290 题干: Firdaws and Fatinah are living in a country with nn cities, numbered from 11 to nn. Each city has a risk of kidnapping or robbery. Firdawss home locates in the city uu, and Fatinahs home locates in the…

动手学PaddlePaddle(1):线性回归

你将学会: 机器学习的基本概念:假设函数、损失函数、优化算法数据怎么进行归一化处理paddlepaddle深度学习框架的一些基本知识如何用paddlepaddle深度学习框架搭建全连接神经网络参考资料:https://www.paddlepaddle.org.cn/documentation/doc…

Apollo进阶课程㉒丨Apollo规划技术详解——Motion Planning with Autonomous Driving

原文链接:进阶课程㉒丨Apollo规划技术详解——Motion Planning with Autonomous Driving 自动驾驶车辆的规划决策模块负责生成车辆的行驶行为,是体现车辆智慧水平的关键。规划决策模块中的运动规划环节负责生成车辆的局部运动轨迹,是决定车辆…

JVM核心之JVM运行和类加载全过程

为什么研究类加载全过程? 有助于连接JVM运行过程更深入了解java动态性(解热部署,动态加载),提高程序的灵活性类加载机制 JVM把class文件加载到内存,并对数据进行校验、解析和初始化,最终形成J…

【2018icpc宁夏邀请赛现场赛】【Gym - 102222A】Maximum Element In A Stack(动态的栈中查找最大元素)

https://nanti.jisuanke.com/t/41285 题干: As an ACM-ICPC newbie, Aishah is learning data structures in computer science. She has already known that a stack, as a data structure, can serve as a collection of elements with two operations: push, …

动手学PaddlePaddle(2):房价预测

通过这个练习可以了解到: 机器学习的典型过程: 获取数据 数据预处理 -训练模型 -应用模型 fluid训练模型的基本步骤: 配置网络结构: 定义成本函数avg_cost 定义优化器optimizer 获取训练数据 定义运算场所(place)和执行器(exe) 提供数…

JAVA 堆栈 堆 方法区 解析

基础数据类型直接在栈空间分配, 方法的形式参数,直接在栈空间分配,当方法调用完成后从栈空间回收。 引用数据类型,需要用new来创建,既在栈空间分配一个地址空间,又在堆空间分配对象的类变量 。 方法的引用…

动手学PaddlePaddle(3):猫脸识别

你将学会: 预处理图片数据 利用PaddlePaddle框架实现Logistic回归模型: 在开始练习之前,简单介绍一下图片处理的相关知识: 图片处理 由于识别猫问题涉及到图片处理知识,这里对计算机如何保存图片做一个简单的介绍。在…

Java对象分配原理

Java对象模型: OOP-Klass模型 在正式探讨JVM对象的创建前,先简单地介绍一下hotspot中实现的Java的对象模型。在JVM中,并没有直接将Java对象映射成C对象,而是采用了oop-klass模型,主要是不希望每个对象中都包含有一份虚函数表&…

动手学PaddlePaddle(4):MNIST(手写数字识别)

本次练习将使用 PaddlePaddle 来实现三种不同的分类器,用于识别手写数字。三种分类器所实现的模型分别为 Softmax 回归、多层感知器、卷积神经网络。 您将学会 实现一个基于Softmax回归的分类器,用于识别手写数字 实现一个基于多层感知器的分类器&#…

动手学PaddlePaddle(5):迁移学习

本次练习,用迁移学习思想,结合paddle框架,来实现图像的分类。 相关理论: 1. 原有模型作为一个特征提取器: 使用一个用ImageNet数据集提前训练(pre-trained)好的CNN,再除去最后一层全连接层(fully-connecte…

Apollo进阶课程㉓丨Apollo规划技术详解——Motion Planning with Environment

原文链接:进阶课程㉓丨Apollo规划技术详解——Motion Planning with Environment 当行为层决定要在当前环境中执行的驾驶行为时,其可以是例如巡航-车道,改变车道或右转,所选择的行为必须被转换成路径或轨迹,可由低级反…