【HDU - 5869】Different GCD Subarray Query(思维,数学,gcd,离线处理,查询区间不同数,树状数组 或 二分RMQ)

题干:

This is a simple problem. The teacher gives Bob a list of problems about GCD (Greatest Common Divisor). After studying some of them, Bob thinks that GCD is so interesting. One day, he comes up with a new problem about GCD. Easy as it looks, Bob cannot figure it out himself. Now he turns to you for help, and here is the problem: 
   
  Given an array aa of NN positive integers a1,a2,⋯aN−1,aNa1,a2,⋯aN−1,aN; a subarray of aa is defined as a continuous interval between a1a1 and aNaN. In other words, ai,ai+1,⋯,aj−1,ajai,ai+1,⋯,aj−1,aj is a subarray of aa, for 1≤i≤j≤N1≤i≤j≤N. For a query in the form (L,R)(L,R), tell the number of different GCDs contributed by all subarrays of the interval [L,R][L,R]. 
  

Input

There are several tests, process till the end of input. 
   
  For each test, the first line consists of two integers NN and QQ, denoting the length of the array and the number of queries, respectively. NN positive integers are listed in the second line, followed by QQ lines each containing two integers L,RL,R for a query. 

You can assume that 
   
    1≤N,Q≤1000001≤N,Q≤100000 
     
   1≤ai≤10000001≤ai≤1000000

Output

For each query, output the answer in one line.

Sample Input

5 3
1 3 4 6 9
3 5
2 5
1 5

Sample Output

6
6
6

题目大意:

给定一个长度n的序列, m个询问区间[L, R], 问区间内的所有子区间的不同GCD值有多少种.

解题报告:

首先一个套路结论就是gcd值下降非常快,最多log次就降为1,所以以每个数为右端点,往前扫的左端点的gcd肯定不会很多,所以直接暴力维护每个点为右端点,的所有gcd值的出现的最右位置(因为随着左端点的左移,gcd是单调不增的,所以只需要记录每个gcd出现的最右位置)。然后直接做区间查询不同数的个数就可以了。在线可以主席树,离线可以树状数组。

当然这题也可以不这样预处理,而是用类似RMQ的方法直接处理区间gcd,然后每次二分的往前找这个位置就可以了。

AC代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
#include<string>
#include<cmath>
#include<cstring>
#define FF first
#define SS second
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
typedef pair<int,int> PII;
const int MAX = 1e6 + 5;
int n,q;
struct Node {int l,r,id;
} Q[100005];
bool cmp(Node a,Node b) {return a.r < b.r;
}
vector<PII> vv[MAX];//gcd值和对应的位置 
int a[MAX];
int pos[MAX];
int ans[MAX];
int c[MAX];
void update(int x,int val) {while(x < MAX) {c[x] += val;x += x&-x;}
}
int sum(int x) {int res = 0;while(x>0) {res += c[x];x -= x&-x;}return res;
}
int main()
{while(cin>>n>>q) {for(int i = 1; i<=n; i++) scanf("%d",a+i),vv[i].clear();memset(pos,0,sizeof pos);memset(c,0,sizeof c);for(int i = 1; i<=n; i++) {int up = vv[i-1].size(),tmp = a[i],now=a[i];vv[i].pb(pm(a[i],i));for(int j = 0; j<up; j++) {now = __gcd(now,vv[i-1][j].FF);if(now == tmp) continue;tmp =  now;vv[i].pb(pm(now,vv[i-1][j].SS));}} 		for(int i = 1; i<=q; i++) scanf("%d%d",&Q[i].l,&Q[i].r),Q[i].id = i;sort(Q+1,Q+q+1,cmp);int cur=1;for(int i = 1; i<=q; i++) {while(cur <= Q[i].r) {int up = vv[cur].size();for(int j = 0; j<up; j++) {if(pos[vv[cur][j].FF]) update(pos[vv[cur][j].FF],-1);update(vv[cur][j].SS,1);pos[vv[cur][j].FF] = vv[cur][j].SS;}			cur++;}ans[Q[i].id] = sum(Q[i].r) - sum(Q[i].l - 1);}for(int i = 1; i<=q; i++) printf("%d\n",ans[i]);		}return 0 ;
}

贴一个题解:

感觉很像线段树/树状数组. 因为有很多题都是枚举从小到大处理查询的r. 这样的话就只需要维护[1,i]的情况最开始用的set记录生成的gcd然后递推, 超时了.

因为区间gcd是有单调性的.  (i-1->1)和i区间gcd是递减的.

而且用RMQ可以O(1)的查询[i,j]gcd的值.如果枚举[1,i-1]感觉很麻烦.所以用二分跳过中间gcd值相同的部分,即查询与i的区间gcd值为x的最左边端点.因为要求不同的值, 这让我想到了用线段树求[l,r]中不同数的个数(忘了是哪道题了 zz)

就i而言,首先找出最靠近i的位置使gcd的值为x. 然后和以前的位置作比较. 尽可能的维护这个位置靠右.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439836.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

13.深度学习练习:Autonomous driving - Car detection(YOLO实战)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ Welcome to your week 3 programming assignment. You will learn about object detection using the very pow…

一步步编写操作系统 25 cpu的保护模式

在保护模式下&#xff0c;我们将见到很多在实模式下没有的新概念&#xff0c;很多都是cpu硬件原生提供&#xff0c;并且要求的东西&#xff0c;也就是说按照cpu的设计&#xff0c;必须有这些东西cpu才能运行。咱们只要了解它们是什么并且怎么用就行了&#xff0c;不用深入到硬件…

【HDU - 5876】Sparse Graph(补图bfs,STLset)

题干&#xff1a; In graph theory, the complementcomplement of a graph GG is a graph HH on the same vertices such that two distinct vertices of HH are adjacent if and only if they are notnotadjacent in GG. Now you are given an undirected graph GG of NN no…

14.深度学习练习:Face Recognition for the Happy House

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ Welcome to the first assignment of week 4! Here you will build a face recognition system. Many of the i…

java Integer 源码学习

转载自http://www.hollischuang.com/archives/1058 Integer 类在对象中包装了一个基本类型 int 的值。Integer 类型的对象包含一个 int 类型的字段。 此外&#xff0c;该类提供了多个方法&#xff0c;能在 int 类型和 String 类型之间互相转换&#xff0c;还提供了处理 int 类…

【HDU - 5875】Function(线段树,区间第一个小于某个数的数 或 RMQ二分)

题干&#xff1a; The shorter, the simpler. With this problem, you should be convinced of this truth. You are given an array AA of NN postive integers, and MM queries in the form (l,r)(l,r). A function F(l,r) (1≤l≤r≤N)F(l,r) (1≤l≤r≤N) is defin…

15.深度学习练习:Deep Learning Art: Neural Style Transfer

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Problem Statement 2 - Transfer Learning 3 - Neural Style Transfer 3.1 - Computing the cont…

java中synchronized(同步代码块和同步方法)详解及区别

问题的由来&#xff1a; 看到这样一个面试题&#xff1a; ? 1 2 3 4 5 6 //下列两个方法有什么区别 public synchronized void method1(){} public void method2(){ synchronized (obj){} } synchronized用于解决同步问题&#xff0c;当有多条线程同时访问共享数据时&a…

【2018icpc宁夏邀请赛现场赛】【Gym - 102222F】Moving On(Floyd变形,思维,离线处理)

https://nanti.jisuanke.com/t/41290 题干&#xff1a; Firdaws and Fatinah are living in a country with nn cities, numbered from 11 to nn. Each city has a risk of kidnapping or robbery. Firdawss home locates in the city uu, and Fatinahs home locates in the…

动手学PaddlePaddle(1):线性回归

你将学会&#xff1a; 机器学习的基本概念&#xff1a;假设函数、损失函数、优化算法数据怎么进行归一化处理paddlepaddle深度学习框架的一些基本知识如何用paddlepaddle深度学习框架搭建全连接神经网络参考资料&#xff1a;https://www.paddlepaddle.org.cn/documentation/doc…

Apollo进阶课程㉒丨Apollo规划技术详解——Motion Planning with Autonomous Driving

原文链接&#xff1a;进阶课程㉒丨Apollo规划技术详解——Motion Planning with Autonomous Driving 自动驾驶车辆的规划决策模块负责生成车辆的行驶行为&#xff0c;是体现车辆智慧水平的关键。规划决策模块中的运动规划环节负责生成车辆的局部运动轨迹&#xff0c;是决定车辆…

JVM核心之JVM运行和类加载全过程

为什么研究类加载全过程&#xff1f; 有助于连接JVM运行过程更深入了解java动态性&#xff08;解热部署&#xff0c;动态加载&#xff09;&#xff0c;提高程序的灵活性类加载机制 JVM把class文件加载到内存&#xff0c;并对数据进行校验、解析和初始化&#xff0c;最终形成J…

【2018icpc宁夏邀请赛现场赛】【Gym - 102222A】Maximum Element In A Stack(动态的栈中查找最大元素)

https://nanti.jisuanke.com/t/41285 题干&#xff1a; As an ACM-ICPC newbie, Aishah is learning data structures in computer science. She has already known that a stack, as a data structure, can serve as a collection of elements with two operations: push, …

动手学PaddlePaddle(2):房价预测

通过这个练习可以了解到&#xff1a; 机器学习的典型过程&#xff1a; 获取数据 数据预处理 -训练模型 -应用模型 fluid训练模型的基本步骤: 配置网络结构&#xff1a; 定义成本函数avg_cost 定义优化器optimizer 获取训练数据 定义运算场所(place)和执行器(exe) 提供数…

JAVA 堆栈 堆 方法区 解析

基础数据类型直接在栈空间分配&#xff0c; 方法的形式参数&#xff0c;直接在栈空间分配&#xff0c;当方法调用完成后从栈空间回收。 引用数据类型&#xff0c;需要用new来创建&#xff0c;既在栈空间分配一个地址空间&#xff0c;又在堆空间分配对象的类变量 。 方法的引用…

【2018icpc宁夏邀请赛现场赛】【Gym - 102222H】Fight Against Monsters(贪心排序)

题干&#xff1a; It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Egbert Felix Gaspar Humbert Ignatius Jayden Kasper Leroy Maximilian. As a storyteller, today I decide to tell you and others a story about t…

动手学PaddlePaddle(3):猫脸识别

你将学会&#xff1a; 预处理图片数据 利用PaddlePaddle框架实现Logistic回归模型&#xff1a; 在开始练习之前&#xff0c;简单介绍一下图片处理的相关知识&#xff1a; 图片处理 由于识别猫问题涉及到图片处理知识&#xff0c;这里对计算机如何保存图片做一个简单的介绍。在…

Java对象分配原理

Java对象模型: OOP-Klass模型 在正式探讨JVM对象的创建前&#xff0c;先简单地介绍一下hotspot中实现的Java的对象模型。在JVM中&#xff0c;并没有直接将Java对象映射成C对象&#xff0c;而是采用了oop-klass模型&#xff0c;主要是不希望每个对象中都包含有一份虚函数表&…

【HihoCoder - 1831】80 Days(尺取 或 线段树)

题干&#xff1a; 80 Days is an interesting game based on Jules Vernes science fiction "Around the World in Eighty Days". In this game, you have to manage the limited money and time. Now we simplified the game as below: There are n cities on a …

动手学PaddlePaddle(4):MNIST(手写数字识别)

本次练习将使用 PaddlePaddle 来实现三种不同的分类器&#xff0c;用于识别手写数字。三种分类器所实现的模型分别为 Softmax 回归、多层感知器、卷积神经网络。 您将学会 实现一个基于Softmax回归的分类器&#xff0c;用于识别手写数字 实现一个基于多层感知器的分类器&#…