8.深度学习练习:Gradient Checking

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。

课程链接:https://www.deeplearning.ai/deep-learning-specialization/

目录

1) How does gradient checking work?

2) 1-dimensional gradient checking

3) N-dimensional gradient checking(掌握)


# Packages
import numpy as np
from testCases import *
from gc_utils import sigmoid, relu, dictionary_to_vector, vector_to_dictionary, gradients_to_vector

1) How does gradient checking work?

Backpropagation computes the gradients\frac{\partial J}{\partial \theta} where \thetadenotes the parameters of the model. ? is computed using forward propagation and your loss function.

Because forward propagation is relatively easy to implement, you're confident you got that right, and so you're almost 100% sure that you're computing the cost ? correctly. Thus, you can use your code for computing ?to verify the code for computing \frac{\partial J}{\partial \theta}.

Let's look back at the definition of a derivative (or gradient):

                                                             \frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon}

If you're not familiar with the "$\displaystyle \lim_{\varepsilon \to 0}$" notation, it's just a way of saying "when ? is really really small."

We know the following:

  • \frac{\partial J}{\partial \theta} is what you want to make sure you're computing correctly.
  • You can compute$J(\theta + \varepsilon)$ and $J(\theta - \varepsilon)$(in the case that ? is a real number), since you're confident your implementation for ?is correct.

2) 1-dimensional gradient checking

Consider a 1D linear function ?(?)=??. The model contains only a single real-valued parameter ?θ, and takes ?x as input.

You will implement code to compute ?(.) and its derivative\frac{\partial J}{\partial \theta} . You will then use gradient checking to make sure your derivative computation for ?Jis correct.

The diagram above shows the key computation steps: First start with ?, then evaluate the function ?(?) ("forward propagation"). Then compute the derivative\frac{\partial J}{\partial \theta} ("backward propagation").

Exercise: implement "forward propagation" and "backward propagation" for this simple function. I.e., compute both ?(.)("forward propagation") and its derivative with respect to ? ("backward propagation"), in two separate functions.

def forward_propagation(x, theta):"""Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x)Arguments:x -- a real-valued inputtheta -- our parameter, a real number as wellReturns:J -- the value of function J, computed using the formula J(theta) = theta * x"""J = theta * x return Jx, theta = 2, 4
J = forward_propagation(x, theta)
print ("J = " + str(J))

Exercise: Now, implement the backward propagation step (derivative computation) of Figure 1. That is, compute the derivative of ?(?)=?? with respect to ?. To save you from doing the calculus, you should get dtheta = \frac { \partial J }{ \partial \theta} = x.

def backward_propagation(x, theta):"""Computes the derivative of J with respect to theta (see Figure 1).Arguments:x -- a real-valued inputtheta -- our parameter, a real number as wellReturns:dtheta -- the gradient of the cost with respect to theta"""dtheta = xreturn dthetax, theta = 2, 4
dtheta = backward_propagation(x, theta)
print ("dtheta = " + str(dtheta))

Instructions:

  • First compute "gradapprox" using the formula above (1) and a small value of ?ε. Here are the Steps to follow:
  1. \theta^{+} = \theta + \varepsilon
  2. \theta^{-} = \theta - \varepsilon
  3. J^{+} = J(\theta^{+})
  4. J^{-} = J(\theta^{-})
  5. gradapprox = \frac{J^{+} - J^{-}}{2 \varepsilon}

Then compute the gradient using backward propagation, and store the result in a variable "grad"
- Finally, compute the relative difference between "gradapprox" and the "grad" using the following formula:

                                             difference = \frac {\mid\mid grad - gradapprox \mid\mid_2}{\mid\mid grad \mid\mid_2 + \mid\mid gradapprox \mid\mid_2}

You will need 3 Steps to compute this formula:
   - 1'. compute the numerator using np.linalg.norm(...)
   - 2'. compute the denominator. You will need to call np.linalg.norm(...) twice.
   - 3'. divide them.

 If this difference is small (say less than 10^{-7},you can be quite confident that you have computed your gradient correctly. Otherwise, there may be a mistake in the gradient computation.

def gradient_check(x, theta, epsilon = 1e-7):"""Implement the backward propagation presented in Figure 1.Arguments:x -- a real-valued inputtheta -- our parameter, a real number as wellepsilon -- tiny shift to the input to compute approximated gradient with formula(1)Returns:difference -- difference (2) between the approximated gradient and the backward propagation gradient"""# Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.thetaplus = theta + epsilonthetaminux = theta - epsilonJ_plus= forward_propagation(x, thetaplus)J_minus = forward_propagation(x, thetaminux)gradapprox = (J_plus - J_minus) / (2*epsilon)# Check if gradapprox is close enough to the output of backward_propagation()grad = backward_propagation(x, theta)numerator = np.linalg.norm(grad - gradapprox)denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)difference = numerator / denominatorif difference < 1e-7:print ("The gradient is correct!")else:print ("The gradient is wrong!")return difference
x, theta = 2, 4
difference = gradient_check(x, theta)
print("difference = " + str(difference))

3) N-dimensional gradient checking(掌握)

The following figure describes the forward and backward propagation of your fraud detection model.

def forward_propagation_n(X, Y, parameters):"""Implements the forward propagation (and computes the cost) presented in Figure 3.Arguments:X -- training set for m examplesY -- labels for m examples parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":W1 -- weight matrix of shape (5, 4)b1 -- bias vector of shape (5, 1)W2 -- weight matrix of shape (3, 5)b2 -- bias vector of shape (3, 1)W3 -- weight matrix of shape (1, 3)b3 -- bias vector of shape (1, 1)Returns:cost -- the cost function (logistic cost for one example)"""# retrieve parametersm = X.shape[1]W1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]W3 = parameters["W3"]b3 = parameters["b3"]# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOIDZ1 = np.dot(W1, X) + b1A1 = relu(Z1)Z2 = np.dot(W2, A1) + b2A2 = relu(Z2)Z3 = np.dot(W3, A2) + b3A3 = sigmoid(Z3)# Costlogprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)cost = 1./m * np.sum(logprobs)cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)return cost, cache
def backward_propagation_n(X, Y, cache):"""Implement the backward propagation presented in figure 2.Arguments:X -- input datapoint, of shape (input size, 1)Y -- true "label"cache -- cache output from forward_propagation_n()Returns:gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables."""m = X.shape[1](Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cachedZ3 = A3 - YdW3 = 1./m * np.dot(dZ3, A2.T)db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)dA2 = np.dot(W3.T, dZ3)dZ2 = np.multiply(dA2, np.int64(A2 > 0))dW2 = 1./m * np.dot(dZ2, A1.T)db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)dA1 = np.dot(W2.T, dZ2)dZ1 = np.multiply(dA1, np.int64(A1 > 0))dW1 = 1./m * np.dot(dZ1, X.T)db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,"dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}return gradients

How does gradient checking work?.

As in 1) and 2), you want to compare "gradapprox" to the gradient computed by backpropagation. The formula is still:

                                                                      \frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon}

However, ? is not a scalar anymore. It is a dictionary called "parameters". We implemented a function "dictionary_to_vector()" for you. It converts the "parameters" dictionary into a vector called "values", obtained by reshaping all parameters (W1, b1, W2, b2, W3, b3) into vectors and concatenating them.

The inverse function is "vector_to_dictionary" which outputs back the "parameters" dictionary.

We have also converted the "gradients" dictionary into a vector "grad" using gradients_to_vector(). You don't need to worry about that.

Exercise: Implement gradient_check_n().

Instructions: Here is pseudo-code that will help you implement the gradient check.

For each i in num_parameters:

To compute J_plus[i]:

  1. Set \theta^{+} to np.copy(parameters_values)
  2. Set $\theta^{+}_ito$\theta^{+}_i + \varepsilon$
  3. Calculate$J^{+}_i$ using to `forward_propagation_n(x, y, vector_to_dictionary(`$\theta^{+}$`))`.

To compute J_minus[i]: do the same thing with\theta^-

Compute  gradapprox[i] = \frac{J^{+}_i - J^{-}_i}{2 \varepsilon}

Thus, you get a vector gradapprox, where gradapprox[i] is an approximation of the gradient with respect to `parameter_values[i]`. You can now compare this gradapprox vector to the gradients vector from backpropagation. Just like for the 1D case (Steps 1', 2', 3'),

                                     difference = \frac {\| grad - gradapprox \|_2}{\| grad \|_2 + \| gradapprox \|_2 }

def gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7):"""Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_nArguments:parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters. x -- input datapoint, of shape (input size, 1)y -- true "label"epsilon -- tiny shift to the input to compute approximated gradient with formula(1)Returns:difference -- difference (2) between the approximated gradient and the backward propagation gradient"""# Set-up variablesparameters_values, _ = dictionary_to_vector(parameters)grad = gradients_to_vector(gradients)num_parameters = parameters_values.shape[0]J_plus = np.zeros((num_parameters, 1))J_minus = np.zeros((num_parameters, 1))gradapprox = np.zeros((num_parameters, 1))# Compute gradapproxfor i in range(num_parameters):# Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".# "_" is used because the function you have to outputs two parameters but we only care about the first onethetaplus = np.copy(parameters_values)thetaplus[i][0] += epsilonJ_plus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaplus))# Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".thetaminus = np.copy(parameters_values)                                     # Step 1thetaminus[i][0] -= epsilon                               # Step 2        J_minus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus))     # Step 3gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)numerator = np.linalg.norm(grad - gradapprox)denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)defference = numerator / denominator### END CODE HERE ###if difference > 1e-7:print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")else:print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")return difference

Note

  • Gradient Checking is slow! Approximating the gradient with\frac{\partial J}{\partial \theta} \approx \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} is computationally costly. For this reason, we don't run gradient checking at every iteration during training. Just a few times to check if the gradient is correct.
  • Gradient Checking, at least as we've presented it, doesn't work with dropout. You would usually run the gradient check algorithm without dropout to make sure your backprop is correct, then add dropout.

*What you should remember from this notebook**: - Gradient checking verifies closeness between the gradients from backpropagation and the numerical approximation of the gradient (computed using forward propagation). - Gradient checking is slow, so we don't run it in every iteration of training. You would usually run it only to make sure your code is correct, then turn it off and use backprop for the actual learning process.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439848.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

苹果手机看电流判断故障

正常的开机电流 1、按开机键后电流在40mA摆动一下&#xff08;CPU供电正常&#xff09;&#xff1b; 2、到80mA左右摆动一下&#xff08;暂存开始工作&#xff0c;也就是CPU上盖&#xff0c;然后开始进行总线的初始化&#xff09;&#xff1b; 3、指针到120mA左右摆动&#xff…

【CodeForces - 675C】Money Transfers(思维,前缀和)

题干&#xff1a; There are n banks in the city where Vasya lives, they are located in a circle, such that any two banks are neighbouring if their indices differ by no more than 1. Also, bank 1 and bank n are neighbours if n > 1. No bank is a neighbou…

9.深度学习练习:Optimization Methods

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Gradient Descent 2 - Mini-Batch Gradient descent 3 - Momentum 4 - Adam 5 - Model with dif…

一步步编写操作系统 22 硬盘操作方法

硬盘中的指令很多&#xff0c;各指令的用法也不同。有的指令直接往command寄存器中写就行了&#xff0c;有的还要在feature寄存器中写入参数&#xff0c;最权威的方法还是要去参考ATA手册。由于本书中用到的都是简单的指令&#xff0c;所以对此抽象出一些公共的步骤仅供参考之用…

10.深度学习练习:Convolutional Neural Networks: Step by Step(强烈推荐)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Packages 2 - Outline of the Assignment 3 - Convolutional Neural Networks 3.1 - Zero-Paddin…

【HDU - 2639】Bone Collector II (第K大背包,dp,STLset)

题干&#xff1a; The title of this problem is familiar,isnt it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you havent seen it before,it doesnt matter,I will give you a link: Here is the link: http…

一步步编写操作系统 23 重写主引导记录mbr

本节我们在之前MBR的基础上&#xff0c;做个稍微大一点的改进&#xff0c;经过这个改进后&#xff0c;我们的MBR可以读取硬盘。听上去这可是个大“手术”呢&#xff0c;我们要将之前学过的知识都用上啦。其实没那么大啦&#xff0c;就是加了个读写磁盘的函数而已&#xff0c;哈…

11.深度学习练习:Keras tutorial - the Happy House(推荐)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ Welcome to the first assignment of week 2. In this assignment, you will: Learn to use Keras, a high-lev…

【HDU - 5014】Number Sequence(贪心构造)

题干&#xff1a; There is a special number sequence which has n1 integers. For each number in sequence, we have two rules: ● a i ∈ [0,n] ● a i ≠ a j( i ≠ j ) For sequence a and sequence b, the integrating degree t is defined as follows(“♁” deno…

一步步编写操作系统 24 编写内核加载器

这一节的内容并不长&#xff0c;因为在进入保护模式之前&#xff0c;我们能做的不多&#xff0c;loader是要经过实模式到保护模式的过渡&#xff0c;并最终在保护模式下加载内核。本节只实现一个简单的loader&#xff0c;本loader只在实模式下工作&#xff0c;等学习了保护模式…

12.深度学习练习:Residual Networks(注定成为经典)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - The problem of very deep neural networks 2 - Building a Residual Network 2.1 - The identity…

【HDU - 5869】Different GCD Subarray Query(思维,数学,gcd,离线处理,查询区间不同数,树状数组 或 二分RMQ)

题干&#xff1a; This is a simple problem. The teacher gives Bob a list of problems about GCD (Greatest Common Divisor). After studying some of them, Bob thinks that GCD is so interesting. One day, he comes up with a new problem about GCD. Easy as it look…

13.深度学习练习:Autonomous driving - Car detection(YOLO实战)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ Welcome to your week 3 programming assignment. You will learn about object detection using the very pow…

一步步编写操作系统 25 cpu的保护模式

在保护模式下&#xff0c;我们将见到很多在实模式下没有的新概念&#xff0c;很多都是cpu硬件原生提供&#xff0c;并且要求的东西&#xff0c;也就是说按照cpu的设计&#xff0c;必须有这些东西cpu才能运行。咱们只要了解它们是什么并且怎么用就行了&#xff0c;不用深入到硬件…

【HDU - 5876】Sparse Graph(补图bfs,STLset)

题干&#xff1a; In graph theory, the complementcomplement of a graph GG is a graph HH on the same vertices such that two distinct vertices of HH are adjacent if and only if they are notnotadjacent in GG. Now you are given an undirected graph GG of NN no…

14.深度学习练习:Face Recognition for the Happy House

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ Welcome to the first assignment of week 4! Here you will build a face recognition system. Many of the i…

java Integer 源码学习

转载自http://www.hollischuang.com/archives/1058 Integer 类在对象中包装了一个基本类型 int 的值。Integer 类型的对象包含一个 int 类型的字段。 此外&#xff0c;该类提供了多个方法&#xff0c;能在 int 类型和 String 类型之间互相转换&#xff0c;还提供了处理 int 类…

【HDU - 5875】Function(线段树,区间第一个小于某个数的数 或 RMQ二分)

题干&#xff1a; The shorter, the simpler. With this problem, you should be convinced of this truth. You are given an array AA of NN postive integers, and MM queries in the form (l,r)(l,r). A function F(l,r) (1≤l≤r≤N)F(l,r) (1≤l≤r≤N) is defin…

15.深度学习练习:Deep Learning Art: Neural Style Transfer

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Problem Statement 2 - Transfer Learning 3 - Neural Style Transfer 3.1 - Computing the cont…

java中synchronized(同步代码块和同步方法)详解及区别

问题的由来&#xff1a; 看到这样一个面试题&#xff1a; ? 1 2 3 4 5 6 //下列两个方法有什么区别 public synchronized void method1(){} public void method2(){ synchronized (obj){} } synchronized用于解决同步问题&#xff0c;当有多条线程同时访问共享数据时&a…