Monitor(管程)是什么意思?Java中Monitor(管程)的介绍

本篇文章给大家带来的内容是关于Monitor(管程)是什么意思?Java中Monitor(管程)的介绍,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

monitor的概念

管程,英文是 Monitor,也常被翻译为“监视器”,monitor 不管是翻译为“管程”还是“监视器”,都是比较晦涩的,通过翻译后的中文,并无法对 monitor 达到一个直观的描述。
在《操作系统同步原语》 这篇文章中,介绍了操作系统在面对 进程/线程 间同步的时候,所支持的一些同步原语,其中 semaphore 信号量 和 mutex 互斥量是最重要的同步原语。
在使用基本的 mutex 进行并发控制时,需要程序员非常小心地控制 mutex 的 down 和 up 操作,否则很容易引起死锁等问题。为了更容易地编写出正确的并发程序,所以在 mutex 和 semaphore 的基础上,提出了更高层次的同步原语 monitor,不过需要注意的是,操作系统本身并不支持 monitor 机制,实际上,monitor 是属于编程语言的范畴,当你想要使用 monitor 时,先了解一下语言本身是否支持 monitor 原语,例如 C 语言它就不支持 monitor,Java 语言支持 monitor。
一般的 monitor 实现模式是编程语言在语法上提供语法糖,而如何实现 monitor 机制,则属于编译器的工作,Java 就是这么干的。

monitor 的重要特点是,同一个时刻,只有一个 进程/线程 能进入 monitor 中定义的临界区,这使得 monitor 能够达到互斥的效果。但仅仅有互斥的作用是不够的,无法进入 monitor 临界区的 进程/线程,它们应该被阻塞,并且在必要的时候会被唤醒。显然,monitor 作为一个同步工具,也应该提供这样的管理 进程/线程 状态的机制。想想我们为什么觉得 semaphore 和 mutex 在编程上容易出错,因为我们需要去亲自操作变量以及对 进程/线程 进行阻塞和唤醒。monitor 这个机制之所以被称为“更高级的原语”,那么它就不可避免地需要对外屏蔽掉这些机制,并且在内部实现这些机制,使得使用 monitor 的人看到的是一个简洁易用的接口。

monitor 基本元素

monitor 机制需要几个元素来配合,分别是:

1.临界区

2.monitor 对象及锁

3.条件变量以及定义在 monitor 对象上的 wait,signal 操作。

使用 monitor 机制的目的主要是为了互斥进入临界区,为了做到能够阻塞无法进入临界区的 进程/线程,还需要一个 monitor object 来协助,这个 monitor object 内部会有相应的数据结构,例如列表,来保存被阻塞的线程;同时由于 monitor 机制本质上是基于 mutex 这种基本原语的,所以 monitor object 还必须维护一个基于 mutex 的锁。
此外,为了在适当的时候能够阻塞和唤醒 进程/线程,还需要引入一个条件变量,这个条件变量用来决定什么时候是“适当的时候”,这个条件可以来自程序代码的逻辑,也可以是在 monitor object 的内部,总而言之,程序员对条件变量的定义有很大的自主性。不过,由于 monitor object 内部采用了数据结构来保存被阻塞的队列,因此它也必须对外提供两个 API 来让线程进入阻塞状态以及之后被唤醒,分别是 wait 和 notify。

Java 语言对 monitor 的支持

monitor 是操作系统提出来的一种高级原语,但其具体的实现模式,不同的编程语言都有可能不一样。以下以 Java 的 monitor 为例子,来讲解 monitor 在 Java 中的实现方式。

临界区的圈定

在 Java 中,可以采用 synchronized 关键字来修饰实例方法、类方法以及代码块,如下所示:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

/**

 * @author beanlam

 * @version 1.0

 * @date 2018/9/12

 */

public class Monitor {

 

    private Object ANOTHER_LOCK = new Object();

 

    private synchronized void fun1() {

    }

 

    public static synchronized void fun2() {

    }

 

    public void fun3() {

        synchronized (this) {

        }

    }

 

    public void fun4() {

        synchronized (ANOTHER_LOCK) {

        }

    }

}

被 synchronized 关键字修饰的方法、代码块,就是 monitor 机制的临界区。

monitor object

可以发现,上述的 synchronized 关键字在使用的时候,往往需要指定一个对象与之关联,例如 synchronized(this),或者 synchronized(ANOTHER_LOCK),synchronized 如果修饰的是实例方法,那么其关联的对象实际上是 this,如果修饰的是类方法,那么其关联的对象是 this.class。总之,synchronzied 需要关联一个对象,而这个对象就是 monitor object
monitor 的机制中,monitor object 充当着维护 mutex以及定义 wait/signal API 来管理线程的阻塞和唤醒的角色。
Java 语言中的 java.lang.Object 类,便是满足这个要求的对象,任何一个 Java 对象都可以作为 monitor 机制的 monitor object。
Java 对象存储在内存中,分别分为三个部分,即对象头、实例数据和对齐填充,而在其对象头中,保存了锁标识;同时,java.lang.Object 类定义了 wait(),notify(),notifyAll() 方法,这些方法的具体实现,依赖于一个叫 ObjectMonitor 模式的实现,这是 JVM 内部基于 C++ 实现的一套机制,基本原理如下所示:

当一个线程需要获取 Object 的锁时,会被放入 EntrySet 中进行等待,如果该线程获取到了锁,成为当前锁的 owner。如果根据程序逻辑,一个已经获得了锁的线程缺少某些外部条件,而无法继续进行下去(例如生产者发现队列已满或者消费者发现队列为空),那么该线程可以通过调用 wait 方法将锁释放,进入 wait set 中阻塞进行等待,其它线程在这个时候有机会获得锁,去干其它的事情,从而使得之前不成立的外部条件成立,这样先前被阻塞的线程就可以重新进入 EntrySet 去竞争锁。这个外部条件在 monitor 机制中称为条件变量。

synchronized 关键字

synchronized 关键字是 Java 在语法层面上,用来让开发者方便地进行多线程同步的重要工具。要进入一个 synchronized 方法修饰的方法或者代码块,会先获取与 synchronized 关键字绑定在一起的 Object 的对象锁,这个锁也限定了其它线程无法进入与这个锁相关的其它 synchronized 代码区域。

网上很多文章以及资料,在分析 synchronized 的原理时,基本上都会说 synchronized 是基于 monitor 机制实现的,但很少有文章说清楚,都是模糊带过。
参照前面提到的 Monitor 的几个基本元素,如果 synchronized 是基于 monitor 机制实现的,那么对应的元素分别是什么?
它必须要有临界区,这里的临界区我们可以认为是对对象头 mutex 的 P 或者 V 操作,这是个临界区
那 monitor object 对应哪个呢?mutex?总之无法找到真正的 monitor object。
所以我认为“synchronized 是基于 monitor 机制实现的”这样的说法是不正确的,是模棱两可的。
Java 提供的 monitor 机制,其实是 Object,synchronized 等元素合作形成的,甚至说外部的条件变量也是个组成部分。JVM 底层的 ObjectMonitor 只是用来辅助实现 monitor 机制的一种常用模式,但大多数文章把 ObjectMonitor 直接当成了 monitor 机制。
我觉得应该这么理解:Java 对 monitor 的支持,是以机制的粒度提供给开发者使用的,也就是说,开发者要结合使用 synchronized 关键字,以及 Object 的 wait / notify 等元素,才能说自己利用 monitor 的机制去解决了一个生产者消费者的问题

运行状态---wait--->等待阻塞---notify--->同步阻塞

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

详解经典GPS辅助惯性导航论文 A GPS-aided Inertial Navigation System in Direct Configuration

本文介绍一篇 IMU 和 GPS 融合的惯性导航论文,重点是理解本文提出的:Dynamical constraints update、Roll and pitch updates 和 Position and heading updates。 论文链接为:https://www.sciencedirect.com/science/article/pii/S166564231…

详解停车位检测论文:Attentional Graph Neural Network for Parking-slot Detection

本文介绍一篇注意力图神经网络用于停车位检测论文,论文已收录于 RA-L2021。在之前的基于卷积神经网络的停车位检测方法中,很少考虑停车位标记点之间的关联信息,从而导致需要复杂的后处理。在本文中,作者将环视图中的标记点看作图结…

详解3D物体检测模型 SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation

本文对基于激光雷达的无监督域自适应3D物体检测进行了研究,论文已收录于 ICCV2021。 在Waymo Domain Adaptation dataset上,作者发现点云质量的下降是3D物件检测器性能下降的主要原因。因此论文提出了Semantic Point Generation (SPG)方法,首…

Waymo研发经理:《自动驾驶感知前沿技术介绍》

Waymo研发经理|自动驾驶感知前沿技术介绍这是Waymo研发经理(VoxelNet作者)的一个最新分享报告:《自动驾驶感知前沿技术介绍》。在这份报告里,介绍了Waymo在自动驾驶感知中五个研究方向的最新成果。 1. Overview of the autonomous…

几种常见软件过程模型的比较

瀑布模型 瀑布模型(经典生命周期)提出了软件开发的系统化的、顺序的方法。其流 程从用户需求规格说明开始,通过策划、建模、构建和部署的过程,最终提供一 个完整的软件并提供持续的技术支持。 优点: 1. 强调开发的…

两篇基于语义地图的视觉定位方案:AVP-SLAM和RoadMap

本文介绍两篇使用语义地图进行视觉定位的论文,两篇论文工程性很强,值得一学。 AVP-SLAM是一篇关于自动泊车的视觉定位方案,收录于 IROS 2020。论文链接为:https://arxiv.org/abs/2007.01813,视频链接为:ht…

【51Nod - 1270】数组的最大代价(dp,思维)

题干&#xff1a; 数组A包含N个元素A1, A2......AN。数组B包含N个元素B1, B2......BN。并且数组A中的每一个元素Ai&#xff0c;都满足1 < Ai < Bi。数组A的代价定义如下&#xff1a; &#xff08;公式表示所有两个相邻元素的差的绝对值之和&#xff09; 给出数组B&…

一步步编写操作系统 56 门、调用门与RPL序 1

小弟多次想把调用门和RPL分开单独说&#xff0c;但几次尝试都没有成功&#xff0c;我发现它们之间是紧偶合、密不可分&#xff0c;RPL的产生主要是为解决系统调用时的“越权”问题&#xff0c;系统调用的实现方式中&#xff0c;以调用门和中断门最为适合。由于以后我们将用中断…

自动驾驶纯视觉3D物体检测算法

视频链接&#xff1a;https://www.shenlanxueyuan.com/open/course/112 这是Pseudo-LiDAR作者最近做的一个分享报告&#xff1a;《Pseudo-LiDAR&#xff1a;基于相机的3D物体检测算法》。在这份报告里&#xff0c;作者主要介绍了博士期间的研究成果&#xff1a;基于深度学习的…

一步步编写操作系统 57 门、调用门与RPL序 2

接上文&#xff1a; 提供了4种门的原因是&#xff0c;它们都有各自的应用环境&#xff0c;但它们都是用来实现从低特权级的代码段转向高特权级的代码段&#xff0c;咱们这里也只讨论有关特权级的功用&#xff1a; 1.调用门 call和jmp指令后接调用门选择子为参数&#xff0c;以…

Coursera自动驾驶课程第15讲:GNSS and INS Sensing for Pose Estimation

在上一讲《Coursera自动驾驶课程第14讲&#xff1a;Linear and Nonlinear Kalman Filters》 我们学习了卡尔曼滤波相关知识&#xff0c;包括&#xff1a;线性卡尔曼滤波&#xff08;KF&#xff09;、扩展卡尔曼滤波&#xff08;EKF&#xff09;、误差卡尔曼滤波&#xff08;ES-…

详解车道线检测数据集和模型 VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection

本文介绍一个新的车道线数据集 VIL-100 和检测模型 MMA-Net&#xff0c;论文已收录于 ICCV2021&#xff0c;重点是理解本文提出的 LGMA 模块&#xff0c;用于聚合局部和全局记忆特征。 论文链接&#xff1a;https://arxiv.org/abs/2108.08482 项目链接&#xff1a;https://gi…

七天入门图像分割(1):图像分割综述

最近在研究自动驾驶视觉语义地图构建&#xff0c;因为要使用到语义分割技术&#xff0c;趁此机会学习了百度飞桨的图像分割课程&#xff0c;课程蛮好的&#xff0c;收获也蛮大的。 课程地址&#xff1a;https://aistudio.baidu.com/aistudio/course/introduce/1767 1. 课程简要…

一步步编写操作系统 59 cpu的IO特权级1

在保护模式下&#xff0c;处理器中的“阶级”不仅体现在数据和代码的访问&#xff0c;还体现在指令中。 一方面将指令分级的原因是&#xff0c;有些指令的执行对计算机有着严重的影响&#xff0c;它们只有在0特权级下被执行&#xff0c;因此被称为特权指令&#xff08;Privile…

重读经典:《ImageNet Classification with Deep Convolutional Neural Networks》

9年后重读深度学习奠基作之一&#xff1a;AlexNet【下】【论文精读】这两天偶然间在B站看了李沐博士对AlexNet论文的重新解读&#xff0c;收获满满。AlexNet是当今深度学习浪潮奠基作之一&#xff0c;发表在2012年。在视频中&#xff0c;李沐博士主要是分享了他的三步法快速读论…

一步步编写操作系统 60 cpu的IO特权级2 什么是驱动程序

用户程序可以在由操作系统加载时通过指定整个eflags设置&#xff0c;操作系统如何设置自己的IOPL呢&#xff0c;即使内核IOPL为0也得写进去eflags寄存器中才生效。可惜的是&#xff0c;没有直接读写eflags寄存器的指令&#xff0c;不过可以通过将栈中数据弹出到eflags寄存器中来…

详解惯性导航论文 RINS-W: Robust Inertial Navigation System on Wheels

本文介绍一篇惯性导航定位论文 RINS-W&#xff0c;论文发表于 IROS2019。在本论文中作者提出了仅使用一个IMU进行长时间惯性导航的方法。方法主要包括两个部分&#xff1a; 检测器使用循环神经网络来检测IMU的运动状况&#xff0c;如零速或零横向滑移&#xff1b;使用Invarian…

一步步编写操作系统 61 任务状态段 TSS

I/O位图是位于TSS中的&#xff0c;它可以存在也可以不存在&#xff0c;它只是用来设置对某些特定端口的访问&#xff0c;没有它的话便默认为禁止访问所有端口。正是由于它可有可用&#xff0c;所以TSS的段界限TSS limit&#xff08;即实际大小-1&#xff09;并不固定。当TSS中不…

重读经典:《Deep Residual Learning for Image Recognition》

ResNet论文逐段精读【论文精读】这是李沐博士论文精读的第二篇论文&#xff0c;这次精读的论文是ResNet。ResNet 是 CVPR2016 的最佳论文&#xff0c;目前谷歌学术显示其被引用数已经达到了90000。 ResNet论文链接为&#xff1a;https://arxiv.org/abs/1512.03385。 1.第一遍 …

【CodeForces - 1131F 】Asya And Kittens(并查集,思维)

题干&#xff1a; Asya loves animals very much. Recently, she purchased nn kittens, enumerated them from 11 and nn and then put them into the cage. The cage consists of one row of nncells, enumerated with integers from 11 to nn from left to right. Adjacent…