Power BI与Power Query、Power Pivot 是什么关系?

搞不清楚Power BI与Power Query、Power Pivot是什么关系?看这篇文章就够了。

刚开始学习PowerBI的时候,总是能碰到Power Query和Power Pivot这两个词(下文简称为PQ和PP),现在中文里面学习PowerBI的资源本来就不是很多,大部分资源还都是介绍PQ和PP的,那么她们到底和PowerBI是什么关系呢?

微软的很多办公工具都是以Power开头,最熟悉的当然就是PowerPoint了,如果ppt可以直译为超级演示,PQ就是超级查询,PP就是超级透视,我们先来看一下PQ。

Power Query

用作数据处理的大众化软件就是万人皆知的Excel了,Excel作为日常办公使用当然没有问题,但在大数据时代,她明显有点扛不住,微软也意识到了这一点,所以从Excel2010开始,推出了一个叫Power Query的插件,可以弥补Excel的不足,处理数据的能力边界大大提升,Excel2013也同样可以使用,现在还在用Excel2010和2013的同学可以从微软官网下载powerquery插件使用。

而到了Excel2016,微软直接把PQ的功能嵌入进来,放在数据选项卡下:

PowerBI中的获取数据界面是这样的:

是不是非常相似,功能也基本是一样,点击进去后都是进入查询编辑器,所用的也都是M语言,所以学习PP就是学习PowerBI中的数据处理模块,无论在Excel中学还是在Power BI中学,都是一样的。

Power Pivot

接触过Excel的人肯定都知道数据透视表,英文名是Pivot Table,按这个翻译PP可以叫做超级透视,但其功能要比数据透视表强大很多,所以PP被大家称为是数据建模,这个名字一下就显得高大上了吧,不过PP确实名副其实,她被称为微软近20年来最伟大的发明,也是PowerBI的灵魂,PP用到的语言是DAX,以后会详细介绍。

在Excel中也可以使用PP,首先从选项里面把这个功能加载进来:

然后Excel选项卡下就多了一个Power Pivot,界面如下:

这个和PowerBI中建模选项卡的功能区也非常相似,所以学习PP就是学习Power BI的数据建模,二者的本质内容是一致的。

刚才看Excel选项中加载项的时候,我们看到Power Pivot旁边还有两个Power兄弟,Power View和Power Map,PV就是数据可视化,PM就是数据地图,这两项也已经内嵌到PowerBI中,且功能更加强大。这两个学习都相对比较简单,就不作介绍,我们学习PowerBI的重点就是数据处理和数据建模,学好这两个以后,数据可视化就是水到渠成而已。

从上面的介绍可以看出,Power Query、Power Pivot、Power view以及Power Map等全部功能聚集到一起,就成了现在的Power BI。

Excelor Power BI Desktop?

既然在Excel和PowerBI Desktop中都可以学习最核心的组件PP和PQ,那么在哪里学习更好呢,其实都可以,看个人的使用习惯。我个人更推荐直接在PowerBI Desktop中学习,理由如下:

PowerBI Desktop界面更友好,逼格更高

PowerBI Desktop更新速度快,几乎每月都有更新,最新的M函数和DAX函数随时可以调用

进行数据处理的最终目标是生成可视化报告,发现有趣的见解,这在PowerBI Desktop中整个流程一气呵成,且图表库和便捷性要完爆Excel

如果还没有开始学习Power BI,对PP和PQ没有什么概念,这篇文章可能比较枯燥,完全可以先忽略,等有些疑惑的时候再看更好。

关注公众号 PowerBI星球,一起死磕PowerBI.

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439498.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

地平线:上帝视角与想象力——自动驾驶感知的新范式

导读 3月28日,在「地平线自动驾驶技术专场」上,地平线自动驾驶系统架构师刘景初博士围绕《上帝视角与想象力——自动驾驶感知的新范式 》这一主题进行了直播讲解。 本次课程主要分为以下4个部分: 1、自动驾驶结构演化提出算法新需求 2、软件2…

详解Class类文件的结构(上)

前言 相信搞Java开发的同学都经常会接触到Class类文件,了解了JVM虚拟机之后也会大量接触到class字节码,那么它到底是什么样的文件?内部由什么构成?虚拟机又是如何去识别它的?这篇文章就来学习一下Class类文件的结构。…

Coursera自动驾驶课程第19讲:Mapping for Planning

在第18讲 《Coursera自动驾驶课程第18讲:The Planning Problem》 我们对自动驾驶中的规划问题有了一个全面的了解,理解了规划问题中的约束和目标;同时我们还讨论了如何分层如解决规划问题(任务规划、行为规划、路径规划和速度曲线…

详解Class类文件的结构(下)

本文继续使用上次的Test.class文件,它是由下面单独的一个类文件编译而成的,没有包。 6. 索引(Index) 索引又分类索引、父类索引和接口索引集合,类索引(this_class)和父类索引(super…

自动驾驶开源软件和算法库

1. Carla(自动驾驶开源仿真软件) github:https://github.com/carla-simulator/carladoc:https://carla.readthedocs.io/en/latest/website:http://carla.org/Bounding boxes:https://carla.readthedocs.io/…

Coursera自动驾驶课程第20讲:Mission Planning in Driving Environments

在第19讲《Coursera自动驾驶课程第19讲:Mapping for Planning》 我们学习了自动驾驶中两种环境建图方法:占用网格图(occupancy grid map) 和 高清地图(high-definition road map)。 在本讲中,我…

Java实例化对象过程中的内存分配

问题引入 这里先定义一个很不标准的“书”类,这里为了方便演示就不对类的属性进行封装了。 class Book{String name; //书名double price; //价格public void getInfo(){System.out.println("name:"name";price:"price);} } 在这个类中定义了两个属…

【Python学习】 - sklearn学习 - KNN

前言: 针对一个完整的机器学习框架目前还没有总结出来,所以目前只能总结每一个单独的算法。由于现在研究的重点是算法,所以对于数据的处理,数据的分析和可视化呈现,在现阶段并不进行展示(这样容易陷入纠结…

重读经典:《End-to-End Object Detection with Transformers》

DETR 论文精读【论文精读】这一次朱毅博士给大家精读的论文是 DETR,是目标检测领域里程碑式的一个工作,文章收录于 ECCV20 。DETR 是 Detection Transformer 的缩写,作者使用 Transformer 简化了目标检测流程,不再需要进行 NMS&am…

Execute SQL Task 参数和变量的映射

Execute SQL Task能够执行带参数的SQL查询语句或存储过程(SP),通过SSIS的变量(Variable)对参数赋值。对于不同的Connection Manager,在Task中需要使用不同的符号(Parameter marker)来…

【Python学习】 - 手写数字识别 - python读入mnist数据集的多种方法

写在前面: 其实网上有很多读入mnist数据的代码,但是都是比较麻烦冗长的函数,本篇文章介绍几种不算很麻烦的,借用库函数读入数据的方法。 方法1: 方法2: 方法3:

Coursera自动驾驶课程第21讲:Dynamic Object Interactions

在第20讲《Coursera自动驾驶课程第20讲:Mission Planning in Driving Environments》 我们学习了任务规划中常用的三种图搜索算法:Breadth First Search、Dijkstra 和 A* 搜索。 在本讲中我们将讨论运动规划器中使用的方法,以处理动态物体和…

sql server 数据库忘记sa账户密码/ 无管理员账户解决办法

一、计算机超级管理员账户有数据库的管理员权限 用管理员账户登录数据库,直接修改sa账户密码即可。 二、数据库中没有管理员权限的账户 SQL Server 2005/2008提供了针对该情况的更好的灾难恢复方法,无需侵入master数据库,不会对master数据库…

机器学习编译第1讲:机器学习编译概述

MLC-机器学习编译-第一讲-机器学习编译概述课程主页:https://mlc.ai/summer22-zh/ 文章目录1.0 概述1.1 什么是机器学习编译1.2 为什么学习机器学习编译1.3 机器学习编译的关键要素1.3.1 备注:抽象和实现1.4 总结1.0 概述 机器学习应用程序已经无处不在…

重读经典:《The Craft of Research(1)》

跟读者建立联系【研究的艺术一】这一次李沐博士给大家精读的是一本关于论文写作的书籍。这本书总共包含四个大的章节,本期视频李沐博士介绍的是第一个章节:Research,Researchers,and Readers。 0. 前言 视频开头,李沐…

机器学习编译第2讲:张量程序抽象

02 张量程序抽象 【MLC-机器学习编译中文版】课程主页:https://mlc.ai/summer22-zh/ 文章目录2.1 元张量函数2.2 张量程序抽象2.2.1 张量程序抽象中的其它结构2.3 张量程序变换实践2.3.1 安装相关的包2.3.2 构造张量程序2.3.3 编译与运行2.3.4 张量程序变换2.3.5 通…

详解自动驾驶仿真数据集 SHIFT:A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation

SHIFT:A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation本文介绍一个新的自动驾驶仿真数据集:SHIFT,论文收录于 CVPR2022。适应连续变化的环境是自动驾驶系统一直以来要面临的挑战。然而,目前现有的图像…

TFS下的源代码控制

以下主要描述了: TFS源代码控制系统的基本场景如何把一个项目添加到源代码管理中如何与服务器同步如何做Check-In如何做分支与合并什么是上架与下架 我们知道工作项是项目管理的基本元素,但是一个项目的成功,光有工作项还是不够的。工作项说…

地平线:面向规模化量产的智能驾驶系统和软件开发

导读 7月27日,地平线在智东西公开课开设的「地平线自动驾驶技术专场」第3讲顺利完结,地平线智能驾驶应用软件部负责人宋巍围绕 《面向规模化量产的智能驾驶系统和软件开发》这一主题进行了直播讲解。本次分享主要分为以下4个部分: 1、智能驾驶…

重读经典(CLIP上):《Learning Transferable Visual Models From Natural Language Supervision》

CLIP 论文逐段精读【论文精读】这一次朱毅博士给大家精读的论文是 CLIP,来自于 OpenAI,是图像文本多模态领域一个里程碑式的工作。 CLIP 的影响力可见一斑,如果按照沐神之前讲的如何判断一个工作的价值来说,CLIP 应该就是 1001001…