自动驾驶开源软件和算法库

1. Carla(自动驾驶开源仿真软件)

在这里插入图片描述

  • github:https://github.com/carla-simulator/carla
  • doc:https://carla.readthedocs.io/en/latest/
  • website:http://carla.org/
  • Bounding boxes:https://carla.readthedocs.io/en/docs-preview/tuto_G_bounding_boxes/
  • 中文教程:https://www.zhihu.com/people/xie-xiao-fei-78-24/posts

2. Kalman-and-Bayesian-Filters-in-Python (卡尔曼和贝叶斯滤波教材)

在这里插入图片描述

  • github:https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
  • binder:https://notebooks.gesis.org/binder/jupyter/user/rlabbe-kalman-a-lters-in-python-lrf1y9u4/lab

3. Udacity Self-Driving Car Engineer Nanodegree(Udacity自动驾驶project)

在这里插入图片描述

  • github:https://github.com/ndrplz/self-driving-car

4. SensorsCalibration toolbox(自动驾驶传感器标定工具箱)

在这里插入图片描述

  • github:https://github.com/PJLab-ADG/SensorsCalibration
  • paper:https://arxiv.org/abs/2205.14087
  • 中文解读:https://zhuanlan.zhihu.com/p/522653980、https://zhuanlan.zhihu.com/p/523274539

5. BEVPerception-Survey-Recipe(BEV感知技术综述与工具箱)

在这里插入图片描述
在这里插入图片描述

  • github:https://github.com/OpenPerceptionX/BEVPerception-Survey-Recipe
  • paper:https://arxiv.org/abs/2209.05324
  • 中文解读:https://zhuanlan.zhihu.com/p/575380316

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439492.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Coursera自动驾驶课程第20讲:Mission Planning in Driving Environments

在第19讲《Coursera自动驾驶课程第19讲:Mapping for Planning》 我们学习了自动驾驶中两种环境建图方法:占用网格图(occupancy grid map) 和 高清地图(high-definition road map)。 在本讲中,我…

Java实例化对象过程中的内存分配

问题引入 这里先定义一个很不标准的“书”类,这里为了方便演示就不对类的属性进行封装了。 class Book{String name; //书名double price; //价格public void getInfo(){System.out.println("name:"name";price:"price);} } 在这个类中定义了两个属…

【Python学习】 - sklearn学习 - KNN

前言: 针对一个完整的机器学习框架目前还没有总结出来,所以目前只能总结每一个单独的算法。由于现在研究的重点是算法,所以对于数据的处理,数据的分析和可视化呈现,在现阶段并不进行展示(这样容易陷入纠结…

重读经典:《End-to-End Object Detection with Transformers》

DETR 论文精读【论文精读】这一次朱毅博士给大家精读的论文是 DETR,是目标检测领域里程碑式的一个工作,文章收录于 ECCV20 。DETR 是 Detection Transformer 的缩写,作者使用 Transformer 简化了目标检测流程,不再需要进行 NMS&am…

Execute SQL Task 参数和变量的映射

Execute SQL Task能够执行带参数的SQL查询语句或存储过程(SP),通过SSIS的变量(Variable)对参数赋值。对于不同的Connection Manager,在Task中需要使用不同的符号(Parameter marker)来…

【Python学习】 - 手写数字识别 - python读入mnist数据集的多种方法

写在前面: 其实网上有很多读入mnist数据的代码,但是都是比较麻烦冗长的函数,本篇文章介绍几种不算很麻烦的,借用库函数读入数据的方法。 方法1: 方法2: 方法3:

Coursera自动驾驶课程第21讲:Dynamic Object Interactions

在第20讲《Coursera自动驾驶课程第20讲:Mission Planning in Driving Environments》 我们学习了任务规划中常用的三种图搜索算法:Breadth First Search、Dijkstra 和 A* 搜索。 在本讲中我们将讨论运动规划器中使用的方法,以处理动态物体和…

sql server 数据库忘记sa账户密码/ 无管理员账户解决办法

一、计算机超级管理员账户有数据库的管理员权限 用管理员账户登录数据库,直接修改sa账户密码即可。 二、数据库中没有管理员权限的账户 SQL Server 2005/2008提供了针对该情况的更好的灾难恢复方法,无需侵入master数据库,不会对master数据库…

机器学习编译第1讲:机器学习编译概述

MLC-机器学习编译-第一讲-机器学习编译概述课程主页:https://mlc.ai/summer22-zh/ 文章目录1.0 概述1.1 什么是机器学习编译1.2 为什么学习机器学习编译1.3 机器学习编译的关键要素1.3.1 备注:抽象和实现1.4 总结1.0 概述 机器学习应用程序已经无处不在…

重读经典:《The Craft of Research(1)》

跟读者建立联系【研究的艺术一】这一次李沐博士给大家精读的是一本关于论文写作的书籍。这本书总共包含四个大的章节,本期视频李沐博士介绍的是第一个章节:Research,Researchers,and Readers。 0. 前言 视频开头,李沐…

机器学习编译第2讲:张量程序抽象

02 张量程序抽象 【MLC-机器学习编译中文版】课程主页:https://mlc.ai/summer22-zh/ 文章目录2.1 元张量函数2.2 张量程序抽象2.2.1 张量程序抽象中的其它结构2.3 张量程序变换实践2.3.1 安装相关的包2.3.2 构造张量程序2.3.3 编译与运行2.3.4 张量程序变换2.3.5 通…

详解自动驾驶仿真数据集 SHIFT:A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation

SHIFT:A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation本文介绍一个新的自动驾驶仿真数据集:SHIFT,论文收录于 CVPR2022。适应连续变化的环境是自动驾驶系统一直以来要面临的挑战。然而,目前现有的图像…

TFS下的源代码控制

以下主要描述了: TFS源代码控制系统的基本场景如何把一个项目添加到源代码管理中如何与服务器同步如何做Check-In如何做分支与合并什么是上架与下架 我们知道工作项是项目管理的基本元素,但是一个项目的成功,光有工作项还是不够的。工作项说…

地平线:面向规模化量产的智能驾驶系统和软件开发

导读 7月27日,地平线在智东西公开课开设的「地平线自动驾驶技术专场」第3讲顺利完结,地平线智能驾驶应用软件部负责人宋巍围绕 《面向规模化量产的智能驾驶系统和软件开发》这一主题进行了直播讲解。本次分享主要分为以下4个部分: 1、智能驾驶…

重读经典(CLIP上):《Learning Transferable Visual Models From Natural Language Supervision》

CLIP 论文逐段精读【论文精读】这一次朱毅博士给大家精读的论文是 CLIP,来自于 OpenAI,是图像文本多模态领域一个里程碑式的工作。 CLIP 的影响力可见一斑,如果按照沐神之前讲的如何判断一个工作的价值来说,CLIP 应该就是 1001001…

TFS准备(一)

一、TFS概念: TFS全称Team FoundationServer,是应用程序生命周期管理的服务端,功能包括如图功能:源代码管理,版本控制,团队开发协作,统一集成,测试管理等。 二、TFS安装要求&#…

重读经典(CLIP下):《Learning Transferable Visual Models From Natural Language Supervision》

上文链接:重读经典(CLIP上):《Learning Transferable Visual Models From Natural Language Supervision》 5. 实验 现在我们已经知道 CLIP 是如何进行预训练的以及作者为什么选用对比学习来预训练 CLIP,接下来我们就…

TFS创建团队项目(三)

打开Visual Studio 2013,视图-团队资源管理器-连接图标(插头图标) 当前是没有TFS服务器,点击服务器按钮 添加,并在URL地址栏里输入装有TFS的服务器IP地址(配置完TFS后有这个URL:http://tfs-serv…

详解4D毫米波雷达数据集(VOD)Multi-class Road User Detection with 3+1D Radar in the View-of-Delft Dataset

Multi-class Road User Detection with 31D Radar in the View-of-Delft Dataset本文介绍一个新的自动驾驶数据集:VOD,论文收录于 ICRA2022。下一代毫米波雷达除了提供距离、方位和多普勒速度外,还会提供高度信息。 在本文中,作者…

自动驾驶之心:毫米波雷达-视觉融合感知方法(前融合/特征级融合/数据级融合)

毫米波雷达-视觉融合感知方法(前融合/特征级融合/数据级融合)分享一个自动驾驶之心的报告:毫米波雷达与视觉融合目标检测。 作者主页为:https://www.zhihu.com/people/nacayu 文章目录1. 毫米波雷达与相机融合检测背景2. 主流融合…