【Diffusion】李宏毅2023机器学习Diffusion笔记

文章目录

  • 1 想法概述
  • 2 实际过程
    • 阶段1 Add Noise
    • 阶段2 Denoise
  • 3 数学原理
  • 4 为什么推理时要额外加入noise
  • 5 一些不知道对不对的Summary

1 想法概述

从一张充满噪声的图中不断denoise,最终得到一张clear的图片。为了确定当前图片中噪声占比的大小,同时输入原图片和参数 t t t,参数 t t t用于标识一张图片中的噪声占比含量。

显然迭代第1次时图片的噪声含量和迭代第999次是不同的,因此需要输入这种信息t来进行标识。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7CjpzYoX-1692290104065)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230814190229199.png)]

2 实际过程

阶段1 Add Noise

首先,准备好一组确定的参数 α 1 ˉ , α 2 ˉ , … , α T ˉ \bar{\alpha_1},\bar{\alpha_2},\dots,\bar{\alpha_T} α1ˉ,α2ˉ,,αTˉ,用以表示时间步 t t t下样本和噪声的混合情况, t t t越大,噪声占比越高。然后重复以下过程直至收敛:

  1. 采样

    1. 从真实样本集中取出一个样本 x 0 x_0 x0

    2. [ 1 , T ] [1,T] [1,T]的整数中采样出 t t t来表示时间步

    3. 从标准正态分布中采样出噪声 ϵ \epsilon ϵ

  2. 构造带噪声样本 x = α t ˉ x 0 + 1 − α t ˉ ϵ x=\sqrt{\bar{\alpha_t}}x_0+ \sqrt{1-\bar{\alpha_t}} \epsilon x=αtˉ x0+1αtˉ ϵ

  3. 将构造样本 x x x和时间步 t t t一同输入噪声预测器 ϵ θ ( ) \epsilon_\theta() ϵθ(),得到预测噪声 ϵ θ ( x , t ) \epsilon_\theta(x,t) ϵθ(x,t)

  4. 目标函数为 ϵ θ ( x , t ) \epsilon_\theta(x,t) ϵθ(x,t)和采样出的真实噪声 ϵ \epsilon ϵ M S E MSE MSE

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D7mqKw6q-1692290104066)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230814194524251.png)]

阶段2 Denoise

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-21zUXHgj-1692290104066)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230814201251917.png)]

3 数学原理

  1. 极大似然估计近似等价于最小化KL散度(表示两个分布的相似性):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S3lKC0VE-1692290104066)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817221857642.png)]

  1. 对任何分布 q ( z ∣ x ) q(z|x) q(zx),有:

log ⁡ P θ ( x ) ≥ ∫ z q ( z ∣ x ) log ⁡ P ( z , x ) q ( z ∣ x ) d z = E q ( z ∣ x ) [ log ⁡ P ( z , x ) q ( z ∣ x ) ] \log P_\theta(x) \ge \int_{z}q(z|x)\log \frac{P(z,x)}{q(z|x)}dz = E_{q(z|x)}[\log \frac{P(z,x)}{q(z|x)}] logPθ(x)zq(zx)logq(zx)P(z,x)dz=Eq(zx)[logq(zx)P(z,x)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EMBIDtfT-1692290104067)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817222057765.png)]

  1. 所以对DDPM来说:

log ⁡ P θ ( x ) ≥ E q ( x 1 : x T ∣ x 0 ) [ log ⁡ P ( x 0 : x T ) q ( x 1 : x T ∣ x 0 ) ] \log P_\theta(x) \ge E_{q(x_1:x_T|x_0)}[\log \frac{P(x_0:x_T)}{q(x_1:x_T|x_0)}] logPθ(x)Eq(x1:xTx0)[logq(x1:xTx0)P(x0:xT)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FqgMWPQQ-1692290104067)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817222642961.png)]

  1. 结合正态分布的可加性:做N次独立的正态sampling,可能通过一次的sampling就能解决。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oyzChf3t-1692290104067)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817225900399.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-w4gtTsG6-1692290104067)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817231727538.png)]

  1. 对式3不断变换,最后可得(这个式子的过程可以不用看,也并不复杂,但是麻烦,理解结论就好):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SY9fKeIh-1692290104068)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817232929967.png)]

然后再经过一系列的运算求出来 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1|x_t,x_0}) q(xt1∣xt,x0)依然是高斯分布,表示首尾 x 0 , x T x_0,x_T x0,xT固定住,产生 x t − 1 x_{t-1} xt1的概率,是一个和network无关的分布。而 P ( x t − 1 ∣ x t ) P(x_{t-1}|x_t) P(xt1xt)是由网络决定的,我们不考虑它的variance,只考虑mean。如果我们希望这两个分布越接近越好,那就想办法让两个分布的mean越接近越好。
在这里插入图片描述

化简:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B0OFKfc5-1692290104068)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817233152037.png)]

实际需要预测出的部分:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OpE6Y02O-1692290104069)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817234731710.png)]

4 为什么推理时要额外加入noise

李宏毅老师的一点Guess,生成式任务,概率最大的结果,未必就是最好的结果。人写的文章用词可能更suprising。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BxAIdBaQ-1692290104069)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817235534101.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-w8wYcaVO-1692290104069)(【Diffusion】李宏毅2023机器学习Diffusion笔记/image-20230817235706919.png)][外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vmK39t6D-1692290104069)(【Diffusion】李宏毅2023机器学习Diffusion笔记/ab7e3c6482dc90f4bfc5857991f4375.jpg)]

5 一些不知道对不对的Summary

  • 希望近似 P d a t a ( x ) P_{data}(x) Pdata(x) P θ ( x ) P_\theta(x) Pθ(x)的分布,而对给定的 x x x,使 P θ ( x ) P_\theta(x) Pθ(x)最大化可以转换为使其下界最大化,从而转换为使 E q ( x 1 : x T ∣ x 0 ) [ log ⁡ P ( x 0 : x T ) q ( x 1 : x T ∣ x 0 ) ] E_{q(x_1:x_T|x_0)}[\log \frac{P(x_0:x_T)}{q(x_1:x_T|x_0)}] Eq(x1:xTx0)[logq(x1:xTx0)P(x0:xT)]最大化。

  • 在假设 x t = β t x t − 1 + 1 − β t z t − 1 x_t=\sqrt{\beta_t}x_{t-1}+\sqrt{1-\beta_t}z_{t-1} xt=βt xt1+1βt zt1的前提下,可以推出 x t = α t ˉ x 0 + 1 − α t ˉ z x_t=\sqrt{\bar{\alpha_t}}x_{0}+\sqrt{1-\bar{\alpha_t}}z xt=αtˉ x0+1αtˉ z

  • 从而可以进一步化简 E q ( x 1 : x T ∣ x 0 ) [ log ⁡ P ( x 0 : x T ) q ( x 1 : x T ∣ x 0 ) ] E_{q(x_1:x_T|x_0)}[\log \frac{P(x_0:x_T)}{q(x_1:x_T|x_0)}] Eq(x1:xTx0)[logq(x1:xTx0)P(x0:xT)]为三项,其余两项与Network无关,可只考虑中间一项,该项由 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1|x_t,x_0}) q(xt1∣xt,x0) P ( x t − 1 ∣ x t ) P(x_{t-1}|x_t) P(xt1xt)的KL散度之和组成,

  • q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)表示首尾 x 0 , x T x_0,x_T x0,xT固定住产生 x t − 1 x_{t-1} xt1的概率,可求得是一个和network无关的高斯分布,均值可以表示为:

  • P ( x t − 1 ∣ x t ) P(x_{t-1}|x_t) P(xt1xt)是由网络决定的,我们不考虑它的variance,只考虑mean。

  • 如果我们希望这两个分布越接近越好,那就想办法让两个分布的mean越接近越好。而上式中,仅有 ϵ \epsilon ϵ需要确定,因此我们希望网络能够预测这个值,从而完成推理。预测出这一项 ϵ \epsilon ϵ的过程,可以看作为从 x 0 x_0 x0 x t x_t xt预测出 x t − 1 x_{t-1} xt1的过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43133.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LVS负载均衡之--Keepalived模式(超详细)

一.Keepalived概述 Keepalived起初是专门针对LVS设计的一款强大的辅助工具,主要用来提供故障切换和健康检查功能-----判断LVS负载调度器,节点服务器的可用性,及时隔离并替换为新的服务器,当故障主机恢复后将其重新加入群集中Keep…

【数据结构】二叉树

🐇 🔥博客主页: 云曦 📋系列专栏:数据结构 💨吾生也有涯,而知也无涯 💛 感谢大家👍点赞 😋关注📝评论 文章目录 前言一、树的概念及结构&#x…

【5G 核心网】5G 多PDU会话锚点技术介绍

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…

Spring Boot(六十四):SpringBoot集成Gzip压缩数据

1 实现思路 2 实现 2.1 创建springboot项目 2.2 编写一个接口,功能很简单就是传入一个Json对象并返回 package com.example.demo.controller;import com.example.demo.entity.Advertising; import lombok.Data; import lombok.extern.slf4j.Slf4j; import org.springframewo…

网络通信原理传输层TCP三次建立连接(第四十八课)

ACK :确认号 。 是期望收到对方的下一个报文段的数据的第1个字节的序号,即上次已成功接收到的数据字节序号加1。只有ACK标识为1,此字段有效。确认号X+1SEQ:序号字段。 TCP链接中传输的数据流中每个字节都编上一个序号。序号字段的值指的是本报文段所发送的数据的第一个字节的…

「UG/NX」Block UI 面收集器FaceCollector

✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#

LangChain手记 Question Answer 问答系统

整理并翻译自DeepLearning.AILangChain的官方课程:Question Answer(源代码可见) 本节介绍使用LangChian构建文档上的问答系统,可以实现给定一个PDF文档,询问关于文档上出现过的某个信息点,LLM可以给出关于该…

【vue】项目基础环境搭建、css样式重置与公用

nodejs环境 nodejs是当下前端工程化开发必不可少的环境, 使用 nodejs的 npm功能来管理依赖包 查看node 和 npm的版本 node -v #查看node版本npm -v #查看npm版本 git版本控制 git版本控制工具是目前最为流行的分布式版本管理工具,代码的**提交, 检出, 日志**, 都需要通过git完…

Matplotlib数据可视化(二)

目录 1.rc参数设置 1.1 lines.linestype取值 1.2 lines.marker参数的取值 1.3 绘图中文预设 1.4 示例 1.4.1 示例1 1.4.2 示例2 1.rc参数设置 利用matplotlib绘图时为了让绘制出的图形更加好看,需要对参数进行设置rc参数设置。可以通过以下代码查看matplotli…

[Machine Learning] decision tree 决策树

(为了节约时间,后面关于机器学习和有关内容哦就是用中文进行书写了,如果有需要的话,我在目前手头项目交工以后,用英文重写一遍) (祝,本文同时用于比赛学习笔记和机器学习基础课程&a…

【算法学习】两数之和II - 输入有序数组

题目描述 原题链接 给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] &#xff0c;则 1 < index1 < …

Springboot MultipartFile文件上传与下载

yml文件配置是否可以上传及上传附件大小 servlet:multipart:# 允许文件上传enabled: true# 单个文件大小max-file-size: 20MB# 设置总上传的文件大小max-request-size: 50MB /*** param files* param request* Description 上传文件* Throws* Return java.util.List* Date 202…

动手学深度学习—卷积神经网络LeNet(代码详解)

1. LeNet LeNet由两个部分组成&#xff1a; 卷积编码器&#xff1a;由两个卷积层组成&#xff1b;全连接层密集块&#xff1a;由三个全连接层组成。 每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层&#xff1b;每个卷积层使用55卷积核和一个sigmoid激…

LeetCode--HOT100题(35)

目录 题目描述&#xff1a;23. 合并 K 个升序链表&#xff08;困难&#xff09;题目接口解题思路1代码解题思路2代码 PS: 题目描述&#xff1a;23. 合并 K 个升序链表&#xff08;困难&#xff09; 给你一个链表数组&#xff0c;每个链表都已经按升序排列。 请你将所有链表合…

UDP 的报文结构以及注意事项

UDP协议 1.UDP协议端格式 1.图中的16位UDP长度,表示整个数据报(UDP首部UDP数据)的最大长度 2.若校验和出错,会直接丢弃 2.UDP的报文结构 UDP报文主体分为两个部分:UDP报头(占8个字节)UDP载荷/UDP数据 1.源端口号 16位,2个字节 2.目的端口号 16位,2个字节 3.包长度 指示了…

sd-webui安装comfyui扩展

文章目录 导读ComfyUI 环境安装1. 安装相关组件2. 启动sd-webui3. 访问sd-webui 错误信息以及解决办法 导读 这篇文章主要给大家介绍如何在sd-webui中来安装ComfyUI插件 ComfyUI ComfyUI是一个基于节点流程式的stable diffusion的绘图工具&#xff0c;它集成了stable diffus…

什么是闭包(closure)?为什么它在JavaScript中很有用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 闭包&#xff08;Closure&#xff09;是什么&#xff1f;⭐ 闭包的用处⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&…

windows10 安装WSL2, Ubuntu,docker

AI- 通过docker开发调试部署ChatLLM 阅读时长&#xff1a;10分钟 本文内容&#xff1a; window上安装ubuntu虚拟机&#xff0c;并在虚拟机中安装docker&#xff0c;通过docker部署数字人模型&#xff0c;通过vscode链接到虚拟机进行开发调试.调试完成后&#xff0c;直接部署在云…

变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践

目录导读 变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践1. 什么是变更通知2. 变更通知的场景分析3. 变更通知的技术方案3.1 变更通知的技术实现方案 4. 变更通知的最佳实践总结5. 参考资料 变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践 1. 什么是变更通…

Ubuntu在自己的项目中使用pcl

1、建立一个文件夹&#xff0c;如pcl_demos&#xff0c;里面建立一个.cpp文件和一个cmake文件 2、打开终端并进入该文件夹下&#xff0c;建立一个build文件夹存放编译的结果并进入该文件夹 3、对上一级进行编译 cmake .. 4、生成可执行文件 make 5、运行该可执行文件 6、可视…