机器学习模型部署
每月版 (MONTHLY EDITION)
Often, the last step of a Data Science task is deployment. Let’s say you’re working at a big corporation. You’re building a project for a customer of the corporation and you’ve created a model that performs well. Unfortunately, the model you’ve created will only be able to be used by the customer if the customer has the code you’ve written, the environment you’ve created, and the machines you’ve been working on.
通常,数据科学任务的最后一步是部署。 假设您在一家大公司工作。 您正在为公司的客户构建项目,并且已经创建了一个运行良好的模型。 不幸的是,只有当客户拥有您编写的代码,所创建的环境以及正在使用的机器时,客户才能使用您创建的模型。
HOWEVER, if you deploy your model into production, the only thing the customer will need is…the product. In other words, a machine learning model will provide real value when it is available to the users that it has been created for. Your model is only a proof of concept (PoC) until it is put into production, then it becomes a deliverable.
但是,如果您将模型部署到生产中,那么客户唯一需要的就是产品。 换句话说, 当机器学习模型可供创建的用户使用时,它将提供真正的价值 。 您的模型只是概念证明(PoC),直到投入生产,然后才能交付使用。
There are many ways to deploy a machine learning model. The basic idea of deployment involves allowing an end-user to utilize your model. The product needs to be customized to the end user’s needs since they will be the ones who will use it. Deployment is a crucial step because it allows others to use the machine learning model that was built.
有很多方法可以部署机器学习模型。 部署的基本思想涉及允许最终用户使用您的模型 。 产品需要根据最终用户的需求进行定制,因为他们将是使用产品的人。 部署是至关重要的一步,因为它允许其他人使用已构建的机器学习模型。
Choosing how to deploy your model into production can be difficult and you’ll need to evaluate what the end-users want and need. Perhaps your model needs to work in real time. Maybe it needs to be used to make many predictions at a time. You might need a particular architecture, etc. There can be many many requirements for a product, and more importantly, it will need to work on all use-cases, which is why debugging your model is essential.
选择如何将模型部署到生产环境可能很困难,您需要评估最终用户的需求。 也许您的模型需要实时工作。 也许需要一次使用它进行许多预测。 您可能需要特定的体系结构等。产品可能有很多需求,更重要的是,它将需要在所有用例上工作,这就是调试模型至关重要的原因。
Michael Armanious, Editor at Towards Data Science.
《迈向数据科学》(Towards Data Science)编辑Michael Armanious 。
为什么我们使用Go而不是Python部署机器学习模型 (Why we deploy machine learning models with Go — not Python)
by Caleb Kaiser — 5 min read
Caleb Kaiser撰写的文章 -5分钟阅读
There’s more to production machine learning than Python scripts
除了Python脚本外,生产机器学习还有更多
使用Python开发NLP模型并使用Flask逐步部署它 (Develop a NLP Model in Python & Deploy It with Flask, Step by Step)
by Susan Li — 6 min read
Susan Li撰写-6分钟阅读
Flask API, Document Classification, Spam Filter
Flask API,文档分类,垃圾邮件过滤器
部署ML模型有两种非常不同的方式,这两种 (There are two very different ways to deploy ML models, here’s both)
by Tom Grek — 9 min read
汤姆·格里克 ( Tom Grek) — 9分钟阅读
If an ML model makes a prediction in Jupyter, is anyone around to hear it?
如果ML模型在Jupyter中进行预测,周围会有人听到吗?
使用Streamlit快速构建和部署仪表板 (Quickly Build and Deploy a Dashboard with Streamlit)
by Maarten Grootendorst — 7 min read
由Maarten Grootendorst撰写 -7分钟阅读
Deploying your Streamlit application to Heroku to showcase your Data Solution
将您的Streamlit应用程序部署到Heroku以展示您的数据解决方案
构建和部署您的第一个机器学习Web应用程序 (Build and deploy your first machine learning web app)
by Moez Ali — 11 min read
通过Moez Ali —阅读11分钟
A beginner’s guide to train and deploy machine learning pipelines in Python using PyCaret
使用PyCaret在Python中训练和部署机器学习管道的初学者指南
构建Web应用程序以部署机器学习模型 (Building a Web Application to Deploy Machine Learning Models)
by Joseph Lee Wei En — 19 min read
作者: 李维恩(Joseph Lee Wei En) — 19分钟阅读
So we’ve built our ML model — now what? How to get out of Jupyter Notebook and into Web Apps with Flask!
因此,我们建立了ML模型-现在呢? 如何使用Flask从Jupyter Notebook进入Web应用程序!
如何使用Angular部署TensorFlow Web应用程序 (How to Use Angular To Deploy TensorFlow Web Apps)
by James Briggs
詹姆斯·布里格斯 ( James Briggs)
Using Python-built models in Angular-built web apps
在Angular构建的Web应用程序中使用Python构建的模型
让我们部署机器学习模型 (Let’s Deploy a Machine Learning Model)
by Dario Radečić — 5 min read
达里奥·拉德奇(DarioRadečić)撰写 -5分钟阅读
How to use machine learning models in production
如何在生产中使用机器学习模型
新影片 (New videos)
Determining Which ML Technologies To Act On | T. Pillai, S. Gandrabur, O. Shai & T. Poutanen
确定要对哪种ML技术采取行动? T. Pillai,S。Gandrabur,O。Shai和T. Poutanen
Panel: Creative Ways to Collect & Use Data for AI | H. Ngo, S. Sun, H. Kontozopoulos, and R. Tabrizi
小组:收集和使用人工智能数据的创新方法 H. Ngo,S。Sun,H。Kontozopoulos和R.Tabrizi
新播客 (New podcasts)
Jakob Foerster — Multi-agent reinforcement learning and the future of AI
Jakob Foerster —多主体强化学习和人工智能的未来
Kenny Ning — Is data science merging with data engineering?
肯尼·宁(Kenny Ning)-数据科学是否与数据工程融合?
Ihab Ilyas — Data cleaning is finally being automated
Ihab Ilyas —数据清理最终实现了自动化
Goku Mohandas — Industry research and how to show off your projects
Goku Mohandas —行业研究以及如何炫耀您的项目
We also thank all the great new writers who joined us recently Jodie Zhou, Kamila Hamalcikova, Kimoon Kim, Ron Sielinski, Nils Flaschel, Matt, Ewan Davies, Dani Solis, Boon Yang, Steve Leven, Ph.D, Farhan Rahman, Stefano Bosisio, Victor Mariano Leite, Robin White, Andreas Kanz, Grzegorz Meller, Pavan Kumar Boinapalli, Alexey Khrustalev, Pratick Roy, Jason O. Jensen, Drew Seewald, José Herazo and many others. We invite you to take a look at their profiles and check out their work.
我们还要感谢所有最近加入我们的伟大新作家,包括周 祖迪 , 卡米拉·哈马尔奇科娃 , 金穆恩·金 , 罗恩·西林斯基 , 尼尔斯·弗拉舍尔 , 马特 , 伊万·戴维斯 , 丹妮·索利斯 , 杨恩 , 史蒂夫·莱文,博士 , 法汉·拉曼 , 史蒂芬诺·波西西奥 , Victor Mariano Leite , Robin White , Andreas Kanz , Grzegorz Meller , Pavan Kumar Boinapalli , Alexey Khrustalev , Pratick Roy , Jason O.Jensen , Drew Seewald , JoséHerazo等。 我们邀请您查看他们的个人资料并查看他们的工作。
翻译自: https://towardsdatascience.com/september-edition-deploying-machine-learning-models-309518cca140
机器学习模型部署
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390000.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!