基于边缘计算的实时绩效_基于绩效的营销中的三大错误

基于边缘计算的实时绩效

We’ve gone through 20% of the 21st century. It’s safe to say digitalization isn’t a new concept anymore. Things are fully or at least mostly online, and they tend to escalate in the digital direction. That’s why it’s important to keep up. Opportunities or mistakes could have tremendous effects depending on it.

我们经历了21世纪的20%。 可以肯定地说数字化不再是一个新概念。 事物完全或至少大部分是在线的,并且它们倾向于在数字方向上升级 。 这就是为什么保持跟进很重要的原因。 机会或错误可能会因此而产生巨大影响。

At the heart of any digital strategy, there’s performance optimization. Because the impact of your strategy, positive or negative, could come at a much larger scale and faster pace in the digital world, you need to always fine-tune its performance. This is especially important in digital marketing, where low performance means burning marketing budgets and get no customer.

性能是任何数字策略的核心。 由于您的策略的正面或负面影响可能会在数字世界中以更大的规模和更快的速度出现,因此您需要始终调整其性能。 这在数字营销中尤其重要,在数字营销中,低绩效意味着要消耗大量营销预算并且没有客户。

The sad truth about this is: everybody knows this, but not many know how to practice it. They would end up making expensive, consequential mistakes that lead nowhere. To help you fix them before ever making them, below are the three most critical mistakes in a digital marketing strategy that you need to identify — along with my recommendations for efficient ways to combat them.

可悲的事实是:每个人都知道这一点,但很少有人知道如何实践。 他们最终将犯下昂贵的后果性错误,导致无济于事。 为了帮助您在制造之前修复它们,以下是您需要确定的数字营销策略中的三个最严重的错误-以及我提出的与之抗衡的有效建议。

1.依靠肠胃的感觉 (1. Relying on Gut Feelings)

The number one enemy of all things performance-related is the negligence of data. Decisions are still often made because somebody has been in the field for decades, or because it feels good, or worse, based on no reason at all.

与性能相关的所有事情的头号敌人是数据的疏忽。 仍然经常做出决定是因为有人已经在该领域工作了数十年 ,或者是因为完全没有理由而感到好坏 。

To exemplify, for a website’s cookie consent banner, when torn between a short, snappy headline and a detailed, sincere one (see example below), many would decide to use one and discard the other based on how it looks, sounds and feels personally. “It looks too long”, “it sounds boring”, or “it feels robot-like, not human”, for one or the other, are some typical arguments provided for justification.

例如,对于一个网站的Cookie同意标语 ,当它在简短而活泼的标题和详尽而真诚的标题之间(见下面的示例)被撕裂时,许多人会根据其外观,声音和个人感觉决定使用一个而放弃另一个。 “看起来太长”,“听起来很无聊”或“感觉像机器人,而不是人类”,这是为辩解提供的一些典型论点。

Chances are, they don’t even know how many customers would agree, what opt-in rate can be expected from each variation, or why a shorter or longer headline even makes a difference.

可能的是,他们甚至不知道会有多少客户同意,每个变化可以预期的选择加入率 ,或者为什么更长或更短的标题甚至会有所作为。

Image for post
Image for post
CookieConsent and CookieConsent和webboutique)webboutique )

This form of data-disregarding decision-making is particularly costly and dangerous in digital projects. It simply doesn’t rely on any factual indication that it will work effectively. It’s like driving blindfolded, where disasters will just wait to happen. So, don’t let it. Be data-driven.

这种无视数据的决策形式在数字项目中尤其昂贵且危险 。 它根本不依赖于任何有效的迹象表明它将有效地工作。 这就像蒙着眼睛开车一样,那里的灾难将等待发生。 所以,不要让它。 受数据驱动。

数据可以来自多种来源,并且可以多种形式出现 (Data can come from multiple sources and in several forms)

For the sources, you can either rely on primary or secondary data:

对于源,您可以依赖主要或辅助数据:

  • Primary data: The kind of data you or your team can collect directly from the customers, competitors, industries, and other stakeholders. It comes from first-hand research, via surveys, interviews, etc., that you have to manage yourself. Hence, it consumes more time and demands more research expertise. On the other hand, you have more control over the design and methodology.

    主要数据:您或您的团队可以直接从客户,竞争对手,行业和其他利益相关者那里收集的数据类型。 它来自第一手研究 ,需要通过调查,访谈等来管理自己。 因此,它消耗更多的时间并需要更多的研究专业知识。 另一方面,您可以更好地控制设计和方法。

  • Secondary data: Any data from external, third-party sources like university research, company reports, and the Internet. It’s convenient and free, yet most reliable insights are usually hidden in the vast archives of open data sources. Thus, finding a relevant piece of secondary data could be a challenge, let alone an up-to-date one. This type of data is useful if you prioritize efficiency over quality, and understand which sources are unreliable to avoid.

    次要数据:来自外部第三方来源的任何数据,例如大学研究,公司报告和Internet。 它既方便又免费,但是大多数可靠的见解通常隐藏在大量开放数据源档案中。 因此,找到相关的辅助数据可能是一个挑战,更不用说最新的了。 如果您优先考虑效率而不是质量,并且了解哪些来源不可靠,则这种类型的数据很有用。

Image for post
the balance)余额 )

In terms of data forms, we have quantitative and qualitative data.

在数据形式方面,我们有定量和定性的数据。

  • Quantitative: Numbers, percentage, date and time, and other similar insights that help you measure how much or how many for a topic. The most common example of quantitative data is KPIs (key performance indicators), where effectiveness is quantified into an amount (e.g. 1,000), proportion (15%), rate (+20%), and so on. It gives you simplicity in understanding how you’re doing but takes away the reasons behind it.

    定量 :数字,百分比,日期和时间以及其他类似的见解,可帮助您衡量一个主题的数量。 定量数据最常见的例子是KPI(关键绩效指标),其有效性被量化为数量(例如1,000),比例(15%),比率(+ 20%)等。 它使您可以轻松地了解自己的工作方式,但可以消除其背后的原因。

  • Qualitative: The said reasons, or complex relations between things and people behind the numbers. Quantitative data provides descriptions, and qualitative data gives you explanations for them. For instance, you see a 10% increase in online traffic after a marketing campaign, but it involves a mix of many assets and messages, so you don’t know what exactly drives the uplift. You can’t decide what to keep, improve, or remove as a result. This question can easily be answered if you ask customers how they feel about which aspect of the campaign, and how it influences their actions. No more blindfolds and assumptions — that’s the power of qualitative data.

    定性的 :所说的原因,或数字背后事物与人之间的复杂关系。 定量数据提供描述,而定性数据为您提供解释。 例如,您在进行营销活动后看到在线流量增加了10%,但这涉及许多资产和消息,因此您不知道是什么真正推动了这种增长。 因此,您无法决定要保留,改进或删除的内容。 如果您询问客户他们对广告系列的哪个方面以及它对他们的行为有何影响,您可以轻松回答该问题。 不再有眼罩和假设-这就是定性数据的力量。

Image for post
Intellspot)Intellspot )

2.低估实验 (2. Underestimating Experiments)

As a rule of thumb, there’s no optimization without experimentation. It applies the same way to digital performance. If you manage a mobile app, you need to experiment (via A/B tests, smoke tests, beta tests, dogfooding, etc.) different features as well as UX and UI elements to estimate which will work best. If you run a Facebook Ad campaign, you need to test and benchmark different images, texts, and videos against each other as well.

根据经验,没有实验就没有优化。 它对数字性能采用相同的方法。 如果您管理移动应用程序,则需要尝试(通过A / B测试 , 冒烟测试 , Beta测试 , 狗食 测试等)不同的功能以及UX和UI元素,以评估哪种功能最有效。 如果您运行Facebook广告活动,则还需要相互测试和比较不同的图像,文本和视频。

What’s more, testing isn’t only about concrete elements like product features or marketing assets. It’s about learning through idea validation. If you have an idea or a hunch, you can elaborate it into a hypothesis and create an experiment to test that hypothesis. Depending on the result, you can accept or reject that hypothesis, which answers if you have a justified, data-backed reason to rely on your idea. If you don’t test, you’ll never learn.

而且,测试不仅针对诸如产品功能或营销资产之类的具体要素。 这是关于通过思想验证进行学习。 如果您有想法或直觉,可以将其阐述为假设,然后创建实验以检验该假设。 根据结果​​,您可以接受或拒绝该假设,如果您有正当的,有数据支持的理由来依赖您的想法,则该假设会得到回答。 如果不考试 ,就永远不会学

Image for post
Optimizely)Optimizely )

What saddens me is the fact that many digital projects or product managers still haven’t adopted a testing mindset. Experimentation isn’t prioritized or even thought of often enough. Hence, you miss countless opportunities to put your ideas under pressure before the customers do. You miss the chance to gain valuable insights for continuous improvement from test results as well. If you’re still making this mistake, it’s time to stop.

让我感到难过的是,许多数字项目或产品经理仍然没有采用测试心态。 没有优先考虑实验,甚至没有足够频繁地考虑。 因此,您会错过无数机会,使您的想法先于客户承受压力。 您也会错过从测试结果中获得持续改进的宝贵见解的机会。 如果您仍然犯此错误,那么该停止了。

以科学的过程开始测试 (Start testing with a scientific process)

Experimentation is easier than it sounds. All you need to do is follow the strict science behind it so the insights are clear, correct, and legitimate. It ultimately prevents you from learning the wrong things.

实验比听起来容易。 您需要做的就是遵循其背后的严格科学知识 ,以便洞察力清晰,正确和合法。 它最终会阻止您学习错误的东西。

There are many publicly available methods and processes you can follow or adapt from to suit your strategy. A few great examples for these include Optimizely’s model for website conversion rate optimization (CRO) and Customlytics’ framework for app store CRO. There are also tools you can use to operate tests properly, many of which are offered by teams of experts who also provide step-by-step guidance as well. All that’s left to do is test one of them (yes, you can test on the meta-level as well) and adjust or scale overtime.

您可以遵循或适应许多适合您的策略的公开可用方法和过程。 其中一些很好的例子包括用于网站转化率优化(CRO)的Optimizely 模型和用于应用商店CRO的Customlytics 框架 。 您还可以使用一些工具来正确运行测试,其中许多工具是由专家团队提供的,他们也提供逐步指导。 剩下要做的就是测试其中之一(是的,您也可以在元级别上进行测试),并调整或扩展加班时间。

Image for post
Image for post
Optimizely (left) and Optimizely (左)和Customlytics (right)Customlytics (右)的示例

超越测试:创意验证 (Beyond testing: idea validation)

Idea validation helps you learn and predict success or failure before it happens based on the signals from a sample or test subject. Despite the crucial role of experiments in idea validation, they aren’t the only component that counts. There are several more groups of methods you can use to validate an idea, as seen in the following summary:

创意验证可帮助您根据来自样本或测试对象的信号,在成功或失败之前学习和预测成功或失败。 尽管实验在想法验证中发挥着至关重要的作用,但它们并不是唯一重要的组成部分。 您可以使用更多方法组来验证一个想法,如以下摘要所示:

Image for post
Itamar Gilad)Itamar Gilad )

What’s next: pick the best method (or a mix of multiple), test it, and start your learning journey.

下一步:选择最佳方法(或多种方法),进行测试 ,然后开始学习之旅。

3.忽略迭代的重要性 (3. Overlooking the Importance of Iteration)

The nature of digital projects is that they must involve the creation of digital assets of some sort in order to operate. In display marketing, it could be an ad banner, infographic, or YouTube video. In Search Engine Optimization (SEO), it includes the keywords used in content writing and search ads bidding. In mobile app development, UI elements like icons and status bars are created. In any case, it’s vital to produce, develop, and manage your digital assets.

数字项目的本质是,它们必须涉及某种形式的数字资产的创建才能运行。 在展示广告营销中,它可以是广告横幅,信息图或YouTube视频。 在搜索引擎优化(SEO)中,它包括内容撰写和搜索广告出价中使用的关键字。 在移动应用程序开发中,将创建UI元素(例如图标和状态栏)。 无论如何,生产,开发和管理您的数字资产至关重要。

The most common and dangerous behavior that many still follow when it comes to digital assets is being too defensive about each of their versions. On the one hand, it’s understandable that all assets must be treated with respect. After all, they’re the resources that fuel your strategy and the materials that help it make an impact. On the other hand, failing to let go could risk making you closed-minded and inflexible.

在涉及数字资产时,许多人仍然会遵循的最常见和最危险的行为是对每个版本的防御性过强。 一方面,必须尊重所有资产,这是可以理解的。 毕竟,它们是为您的策略提供动力的资源,以及可以帮助您产生影响的材料。 另一方面,不放手会冒使您头脑笨拙和僵化的风险。

Since nobody is perfect, whatever kind of strategy you come up with will most likely always have space for improvement. You need to keep iterating, and it won’t work unless you’re flexible enough, as you’ll grow resistant to change. This is a dreadful mistake that you need to avoid as early as possible — and remembering the following will help:

由于没有人是完美的,因此无论您想出哪种策略,都很可能总有改进的空间。 您需要保持迭代,除非您有足够的灵活性,否则它将无法正常工作,因为您将变得难以抗拒变化。 这是一个可怕的错误,您需要尽早避免-记住以下内容将有所帮助:

Image for post
MedTech Europe)MedTech Europe的图片)

除非所有资产都是100%优化的,否则它们都是原型 (All assets are prototypes unless they are 100% optimized)

To make sure you’re always up for iterating, remember the true nature of all digital assets: they’re temporary. Like prototypes, as soon as an updated, fine-tuned, and superior version is available, they’ll be “killed.”

为确保您始终愿意进行迭代,请记住所有数字资产的真实性质:它们是临时的。 与原型一样,一旦有更新,经过微调和更高级的版本可用,它们就会被“ 杀死” 。

By being defensive and resistant to change, you won’t allow yourself to learn and your assets to “evolve.” By contrast, if you let go of them and iterate rapidly, you’ll give the chance to quickly become the best they can be.

通过具有防御能力和抵御变化的能力,您将无法学习,资产也无法“发展”。 相比之下,如果您放开它们并快速迭代,您将有机会Swift成为最好的它们。

Image for post
Unlock The Value Advisors)Unlock The Value Advisors )

单一资产的影响不如许多资产的混合 (Single assets are not as impactful as mixtures of many)

Having the best assets of all types isn’t enough. You also need to be sure they work well collectively. Take app store CRO campaigns, for instance, where you have a range of on-page text and visual assets (e.g. title, descriptions for text and icon, screenshots for visual) at your disposal. Even if you have the best ever version of everything, chances are they won’t fit well together straight away. Their synergy or relationship will likely show space for improvement.

拥有所有类型的最佳资产还不够。 您还需要确保它们共同运作良好。 例如,以应用商店CRO活动为例,您可以随意使用一系列页面上的文字和视觉资产(例如标题,文字和图标说明,视觉截图)。 即使您拥有所有版本中最好的版本,它们也可能无法立即很好地融合在一起。 他们的协同作用或关系可能会显示出改进的空间。

If you ignore them, and they tell contradicting stories that confuse the audience, it becomes a marketing nightmare. Entire campaigns could be ruined. In cases like this, having wonderful individual assets may still lead to uninspiring results. Make sure all digital assets you work with get along well like a team.

如果您忽略它们,并且它们讲述的矛盾故事使观众感到困惑,那么它将成为营销的噩梦。 整个竞选活动可能会被摧毁。 在这种情况下,拥有出色的个人资产可能仍会导致令人鼓舞的结果。 确保与您合作的所有数字资产都像团队一样相处融洽。

Image for post
Mobile Action)Mobile Action )

Digitalization involves a high dose of uncertainty and unpredictability. In the online environment, you can’t walk up to a customer and talk to them, or dissect a software to see how each component works, or hear the claps coming from readers who enjoy your blog posts. It’s a grey zone full of traps, where you make mistakes that cost you a piece of business at a time.

数字化涉及大量不确定性和不可预测性。 在在线环境中,您无法走近客户并与他们交谈,也无法剖析软件来查看每个组件的工作原理,也无法听到喜欢您博客文章的读者的鼓掌。 这是一个充满陷阱的灰色地带,您在这里犯错,一次就要付出一笔生意。

Among those mistakes, there are three that I believe to have greater significance than the rest:

在这些错误中,我认为有三个比其他错误具有更大的意义:

  • The reliance on gut feelings;

    对直觉的依赖;
  • The underestimation of experimentation; and

    低估了实验; 和
  • The oversight of iterative adjustments.

    监督迭代调整。

And the solutions are simple: use data, test, and iterate.

解决方案很简单:使用datatestiterate

翻译自: https://medium.com/better-marketing/the-3-biggest-mistakes-in-performance-based-marketing-1d60424d5a79

基于边缘计算的实时绩效

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389030.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

为什么Facebook的API以一个循环作为开头?

作者 | Antony Garand译者 | 无明如果你有在浏览器中查看过发给大公司 API 的请求,你可能会注意到,JSON 前面会有一些奇怪的 JavaScript:为什么他们会用这几个字节来让 JSON 失效?为了保护你的数据 如果没有这些字节,那…

城市轨道交通运营票务管理论文_城市轨道交通运营管理专业就业前景怎么样?中职优选告诉你...

​​城市轨道交通运营管理专业,专业就业前景怎么样?就业方向有哪些?有很多同学都感觉很迷忙,为了让更多的同学们了解城市轨道交通运营管理专业的就业前景与就业方向,整理出以下内容希望可以帮助同学们。城市轨道交通运…

计算机视觉对扫描文件分类 OCR

通过计算机视觉对扫描文件分类 一种解决扫描文档分类问题的深度学习方法 在数字经济时代, 银行、保险、治理、医疗、法律等部门仍在处理各种手写票据和扫描文件。在业务生命周期的后期, 手动维护和分类这些文档变得非常繁琐。 对这些非机密文档进行简…

笑话生成器_爸爸笑话发生器

笑话生成器(If you’re just here for the generated jokes, scroll down to the bottom!)(如果您只是在这里生成笑话,请向下滚动到底部!) I thought: what is super easy to build, yet would still get an approving chuckle if someone found it on …

机器学习实践二 -多分类和神经网络

本次练习的任务是使用逻辑归回和神经网络进行识别手写数字(form 0 to 9, 自动手写数字问题已经应用非常广泛,比如邮编识别。 使用逻辑回归进行多分类分类 练习2 中的logistic 回归实现了二分类分类问题,现在将进行多分类,one vs…

Hadoop 倒排索引

倒排索引是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。它主要是用来存储某个单词(或词组)在一个文档或一组文档中存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内…

koa2异常处理_读 koa2 源码后的一些思考与实践

koa2的特点优势什么是 koa2Nodejs官方api支持的都是callback形式的异步编程模型。问题:callback嵌套问题koa2 是由 Express原班人马打造的,是现在比较流行的基于Node.js平台的web开发框架,Koa 把 Express 中内置的 router、view 等功能都移除…

上凸包和下凸包_使用凸包聚类

上凸包和下凸包I recently came across the article titled High-dimensional data clustering by using local affine/convex hulls by HakanCevikalp in Pattern Recognition Letters. It proposes a novel algorithm to cluster high-dimensional data using local affine/c…

幸运三角形 南阳acm491(dfs)

幸运三角形 时间限制:1000 ms | 内存限制:65535 KB 难度:3描述话说有这么一个图形,只有两种符号组成(‘’或者‘-’),图形的最上层有n个符号,往下个数依次减一,形成倒置…

决策树有框架吗_决策框架

决策树有框架吗In a previous post, I mentioned that thinking exhaustively is exhausting! Volatility and uncertainty are ever present and must be factored into our decision making — yet, we often don’t have the time or data to properly account for it.在上一…

8 一点就消失_消失的莉莉安(26)

文|明鸢Hi,中午好,我是暖叔今天是免费连载《消失的莉莉安》第26章消失的莉莉安▶▶往期链接:▼ 向下滑动阅读1:“消失的莉莉安(1)”2: 消失的莉莉安(2)3:“消失的莉莉安(3)”4:“消失的莉莉安…

mysql那本书适合初学者_3本书适合初学者

mysql那本书适合初学者为什么要书籍? (Why Books?) The internet is a treasure-trove of information on a variety of topics. Whether you want to learn guitar through Youtube videos or how to change a tire when you are stuck on the side of the road, …

语音对话系统的设计要点与多轮对话的重要性

这是阿拉灯神丁Vicky的第 008 篇文章就从最近短视频平台的大妈与机器人快宝的聊天说起吧。某银行内,一位阿姨因等待办理业务的时间太长,与快宝机器人展开了一场来自灵魂的对话。对于银行工作人员的不满,大妈向快宝说道:“你们的工…

c读取txt文件内容并建立一个链表_C++链表实现学生信息管理系统

可以增删查改&#xff0c;使用链表存储&#xff0c;支持排序以及文件存储及数据读取&#xff0c;基本可以应付期末大作业&#xff08;狗头&#xff09; 界面为源代码为一个main.cpp和三个头文件&#xff0c;具体为 main.cpp#include <iostream> #include <fstream>…

阎焱多少身价_2020年,数据科学家的身价是多少?

阎焱多少身价Photo by Christine Roy on Unsplash克里斯汀罗伊 ( Christine Roy) 摄于Unsplash Although we find ourselves in unprecedented times of uncertainty, current events have shown just how valuable the fields of Data Science and Computer Science truly are…

单据打印_Excel多功能进销存套表,自动库存单据,查询打印一键操作

Hello大家好&#xff0c;我是帮帮。今天跟大家分享一张Excel多功能进销存管理套表&#xff0c;自动库存&#xff0c;单据打印&#xff0c;查询统算一键操作。为了让大家能更稳定的下载模板&#xff0c;我们又开通了全新下载方式(见文章末尾)&#xff0c;以便大家可以轻松获得免…

卡尔曼滤波滤波方程_了解卡尔曼滤波器及其方程

卡尔曼滤波滤波方程Before getting into what a Kalman filter is or what it does, let’s first do an exercise. Open the google maps application on your phone and check your device’s current location.在了解什么是卡尔曼滤波器或其功能之前&#xff0c;我们先做一个…

Candidate sampling:NCE loss和negative sample

在工作中用到了类似于negative sample的方法&#xff0c;才发现我其实并不了解candidate sampling。于是看了一些相关资料&#xff0c;在此简单总结一些相关内容。 主要内容来自tensorflow的candidate_sampling和卡耐基梅隆大学一个学生写的一份notesNotes on Noise Contrastiv…

golang key map 所有_Map的底层实现 为什么遍历Map总是乱序的

Golang中Map的底层结构其实提到Map&#xff0c;一般想到的底层实现就是哈希表&#xff0c;哈希表的结构主要是Hashcode 数组。存储kv时&#xff0c;首先将k通过hashcode后对数组长度取余&#xff0c;决定需要放入的数组的index当数组对应的index已有元素时&#xff0c;此时产生…

朴素贝叶斯分类器 文本分类_构建灾难响应的文本分类器

朴素贝叶斯分类器 文本分类背景 (Background) Following a disaster, typically you will get millions and millions of communications, either direct or via social media, right at the time when disaster response organizations have the least capacity to filter and…