【Linux网络编程学习】I/O多路复用——select和poll

此为牛客Linux C++课程和黑马Linux系统编程笔记。

0. I/O多路复用

所谓I/O就是对socket提供的内存缓冲区的写入和读出。
多路复用就是指程序能同时监听多个文件描述符。

之前的学习中写了多进程和多线程版的简单服务器模型,但是有个问题:每次新来一个客户端TCP连接请求,就需要新建一个进程或线程来与之进行信息传输,但是如果连接的客户端太多,就会出现所谓C10K问题:

当创建的进程或线程多了,数据拷贝频繁(缓存I/O、内核将数据拷贝到用户进程空间、阻塞,进程/线程上下文切换消耗大,导致操作系统崩溃,这就是C10K问题的本质。

所以为每个请求分配一个进程/线程的方式不合适,进程或线程本身会消耗资源,且线程或进程调度也会消耗CPU资源。所以I/O 多路复用技术应运而生,让一个进程或线程处理多个请求。

Linux 下实现 I/O 多路复用的系统调用主要有 select、poll 和 epoll,本篇介绍select和poll。

1. select

主旨思想:

  1. 首先要构造一个关于文件描述符的列表,将要监听的文件描述符添加到该列表中。
  2. 调用一个系统函数,监听该列表中的文件描述符,直到这些描述符中的一个或者多个进行I/O
    操作时,该函数才返回。
    a.这个函数是阻塞
    b.函数对文件描述符的检测的操作是由内核完成的
  3. 在返回时,它会告诉进程有多少(哪些)描述符要进行I/O操作。

1.1 select API介绍

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/select.h>
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);

参数:

  • nfds : 委托内核检测的最大文件描述符的值 + 1
  • readfds : 要检测的文件描述符的读的集合,即委托内核检测哪些文件描述符的读的属性,对应的是对方发送过来的数据,因为读是被动的接收数据,检测的就是读缓冲区
  • writefds : 要检测的文件描述符的写的集合,即委托内核检测哪些文件描述符的写的属性,委托内核检测写缓冲区是不是还可以写数据(不满的就可以写)
  • exceptfds : 检测发生异常的文件描述符的集合

注意:以上三个是传入传出参数,以readfds为例,传入的时候将需要监听读事件的文件描述符对应fd_set位置为1传入,执行select后,select将把readfds中真正监听到读事件的文件描述符的对应位保持为1,而把没有到读事件的文件描述符的对应位修改为0,这样我们再遍历这个传出的fd_set,哪个文件描述符对应位为1就说明监听到了哪个文件描述符的读事件。

  • timeout : 设置的超时时间
struct timeval {long tv_sec; /* seconds */long tv_usec; /* microseconds */
};

NULL : 永久阻塞,直到检测到了文件描述符有变化
tv_sec = 0 tv_usec = 0, 不阻塞
tv_sec > 0 tv_usec > 0, 阻塞对应的时间

返回值 :

  • -1 : 失败
  • >0(n) : 检测的集合中有n个文件描述符发生了变化

对于第2、3、4个参数涉及到的fd_set,它是一个文件描述符的位图,默认为1024位,可以理解成一个一维数组,可把数组的下标看作文件描述符的值,数组的值为1表示需要监听该下标所对应的文件描述符。关于fd_set的设置可使用以下宏:

// 将参数文件描述符fd对应的标志位设置为0
void FD_CLR(int fd, fd_set *set);
// 判断fd对应的标志位是0还是1, 返回值 : fd对应的标志位的值,0,返回0, 1,返回1
int FD_ISSET(int fd, fd_set *set);
// 将参数文件描述符fd 对应的标志位,设置为1
void FD_SET(int fd, fd_set *set);
// fd_set一共有1024 bit, 全部初始化为0
void FD_ZERO(fd_set *set);

1.2 select使用过程示例

比如说现在客户端A,B,C,D已经连接了服务器,其socket文件描述符分别是3、4、100、101。我们想要使用select监听这四个客户端的读事件,该如何做?
在这里插入图片描述
如图,首先建立一个fd_set,调用FD_ZERO初始化其每一位都是0,我们现在需要调用FD_SET把想要监听的文件描述符的对应位置1:
在这里插入图片描述
这样fd_set就设置好了,我们调用select,第一个参数是想监听的最大文件描述符+1,所以传入101+1;第二个参数传入reads的地址。此后,内核便负责监听这四个socket文件的读缓冲区。
在这里插入图片描述
假如说,A和B发送了数据,调用select后,3、4对应的位不变,而没有检测到读事件的100和101就被赋为0,然后传出。我们通过FD_ISSET遍历reads就可以判断哪些客户端发送了数据。

1.3 select示例程序

#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/select.h>int main() {// 创建socketint lfd = socket(PF_INET, SOCK_STREAM, 0);struct sockaddr_in saddr;saddr.sin_port = htons(9999);saddr.sin_family = AF_INET;saddr.sin_addr.s_addr = INADDR_ANY;// 绑定bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));// 监听listen(lfd, 8);// 创建一个fd_set的集合,存放的是需要检测的文件描述符fd_set rdset, tmp;FD_ZERO(&rdset);FD_SET(lfd, &rdset);int maxfd = lfd;while(1) {tmp = rdset;// 调用select系统函数,让内核帮检测哪些文件描述符有数据int ret = select(maxfd + 1, &tmp, NULL, NULL, NULL);if(ret == -1) {perror("select");exit(-1);} else if(ret == 0) {continue;} else if(ret > 0) {// 说明检测到了有文件描述符的对应的缓冲区的数据发生了改变if(FD_ISSET(lfd, &tmp)) {// 表示有新的客户端连接进来了struct sockaddr_in cliaddr;int len = sizeof(cliaddr);int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);// 将新的文件描述符加入到集合中FD_SET(cfd, &rdset);// 更新最大的文件描述符maxfd = maxfd > cfd ? maxfd : cfd;}// 我们需要遍历来确定哪个文件描述符发送来了数据// 这是select的缺点之一for(int i = lfd + 1; i <= maxfd; i++) {if(FD_ISSET(i, &tmp)) {// 说明这个文件描述符对应的客户端发来了数据char buf[1024] = {0};int len = read(i, buf, sizeof(buf));if(len == -1) {perror("read");exit(-1);} else if(len == 0) {printf("client closed...\n");close(i);FD_CLR(i, &rdset);} else if(len > 0) {printf("read buf = %s\n", buf);write(i, buf, strlen(buf) + 1);}}}}}close(lfd);return 0;
}

1.4 select的缺点

在这里插入图片描述

2. poll

poll是对select的改进。poll和select的使用方法很像,但对select有以下改进:

  1. 突破了1024的打开文件上限数,原因是它是基于链表来存储的。
  2. select中fd_set是被内核和用户共同修改的,而poll分离了监听事件集合和返回事件集合,可以使编程更简洁。

2.1 poll API介绍

#include <poll.h>
int poll(struct pollfd *fds, nfds_t nfds, int timeout);

参数:

  • fds : 是一个struct pollfd 结构体数组,这是一个需要检测的文件描述符的集合
struct pollfd {int fd; /* 委托内核检测的文件描述符 */short events; /* 委托内核检测文件描述符的什么事件 */short revents; /* 文件描述符实际发生的事件 */
};

其中events和revents有以下可选项,选择多个可用|进行连接
在这里插入图片描述
以下是创建该结构体的示例:

struct pollfd myfd;
myfd.fd = 5;
myfd.events = POLLIN | POLLOUT;
  • nfds : 这个是第一个参数数组中最后一个有效元素的下标 + 1
  • timeout : 阻塞时长
    0 : 不阻塞
    -1 : 阻塞,当检测到需要检测的文件描述符有变化,解除阻塞
    >0 : 阻塞的时长

2.2 poll 示例程序

#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <poll.h>int main() {// 创建socketint lfd = socket(PF_INET, SOCK_STREAM, 0);struct sockaddr_in saddr;saddr.sin_port = htons(9999);saddr.sin_family = AF_INET;saddr.sin_addr.s_addr = INADDR_ANY;// 绑定bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));// 监听listen(lfd, 8);// 初始化检测的文件描述符数组struct pollfd fds[1024];for(int i = 0; i < 1024; i++) {fds[i].fd = -1;fds[i].events = POLLIN;}fds[0].fd = lfd;int nfds = 0;while(1) {// 调用poll系统函数,让内核帮检测哪些文件描述符有数据int ret = poll(fds, nfds + 1, -1);if(ret == -1) {perror("poll");exit(-1);} else if(ret == 0) {continue;} else if(ret > 0) {// 说明检测到了有文件描述符的对应的缓冲区的数据发生了改变if(fds[0].revents & POLLIN) {// 表示有新的客户端连接进来了struct sockaddr_in cliaddr;int len = sizeof(cliaddr);int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);// 将新的文件描述符加入到集合中for(int i = 1; i < 1024; i++) {if(fds[i].fd == -1) {fds[i].fd = cfd;fds[i].events = POLLIN;break;}}// 更新最大的文件描述符的索引nfds = nfds > cfd ? nfds : cfd;}for(int i = 1; i <= nfds; i++) {if(fds[i].revents & POLLIN) {// 说明这个文件描述符对应的客户端发来了数据char buf[1024] = {0};int len = read(fds[i].fd, buf, sizeof(buf));if(len == -1) {perror("read");exit(-1);} else if(len == 0) {printf("client closed...\n");close(fds[i].fd);fds[i].fd = -1;} else if(len > 0) {printf("read buf = %s\n", buf);write(fds[i].fd, buf, strlen(buf) + 1);}}}}}close(lfd);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/384555.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux网络编程学习】阻塞、非阻塞、同步、异步以及五种I/O模型

文章目录1. 基本概念1.1 阻塞与非阻塞1.2 同步与异步1.3 为什么没有“异步阻塞”2. 五种IO模型2.1 阻塞 blocking2.2 非阻塞 non-blocking2.3. IO复用&#xff08;IO multiplexing&#xff09;2.4 信号驱动&#xff08;signal-driven&#xff09;2.5 异步&#xff08;asynchron…

STM32时钟树解析

本人之前其实也用STM32做过一些小东西&#xff0c;但因为时钟的初始化一般是直接在SystemInit时钟系统初始化函数里直接配置为72MHz&#xff0c;所以对于STM32的时钟框图并没有怎么理会&#xff0c;今天刚好有空就重新看了一下并写一篇博客记录一下吧&#xff0c;以免以后又忘了…

S3C2440时钟体系

S3C2440在默认情况下&#xff0c;整个系统全靠一个12MHz的外部晶振提供频率来工作运行的&#xff0c;也就是说CPU、内存、UART、ADC等所有需要用到时钟频率的硬件都工作在12MHz下&#xff0c;但是通过查阅芯片手册我们知道CPU时钟最高可为400MHZ&#xff0c;那么怎么设置时钟让…

关于MCU、CPU扩展SDRAM的一个小知识

像上图这种硬件电路图上的16个数据位和我们在初始化SDRAM的时候设置的16位数据位宽是指我们读写SDRAM的时候可以同时读写16个数据位&#xff0c;数据线越多肯定越快&#xff0c;但是数据线也不可能无限增加&#xff0c;我们在程序里是可以读写8位&#xff0c;16位&#xff0c;3…

S3C2440扩展SDRAM

本文主要目的是记录一下S3C2440扩展SDRAM的一些知识&#xff0c;方便以后查阅。 通过查阅手册我们知道&#xff0c;2440有8个可以用来扩展内存的BANK&#xff0c;其中第6和第7还可用来扩展SDRAM 下面我们来看一下2440扩展SDRAM需要设置哪些寄存器。 一、BWSCON寄存器 该寄存器…

汇编语言的相对跳转和绝对跳转以及反汇编代码解析

上图第一行的b1 main为相对跳转&#xff0c;即跳转到pcoffset,其中pc为当前pc值&#xff0c;offset可以理解为偏移地址&#xff0c;也就是根据当前所在地址加上偏移地址实现跳转&#xff0c;为相对跳转。 我们来看看它的反汇编代码 上图清除完bss区后使用b1指令跳转到30000668…

韦东山嵌入式第一期14课第004节_und异常模示程序示例_P笔记

本节课的第一个程序韦老师是想让大家见识一下未定义异常&#xff0c;而第二个程序是对第一个程序进行改进&#xff0c;防止在某些条件下执行不了&#xff0c;下面就来讲一下第2个程序改进了哪些地方并且有什么用。 程序在此路径中&#xff1a;源码文档图片\源码\源码_20180321…

关于NOR FLASH地址左右移的问题

问题引入&#xff1a;不知道你会不会有这样的疑问&#xff1a;为什么在发送解锁命令时&#xff0c;我们不用右移一位&#xff0c;而发送扇区地址时却要右移一位&#xff08;nor_cmd函数内部已经左移一位&#xff09;&#xff0c;这里先补充说明一下说明是cpu角度和nor角度&…

在linux下利用ls命令进行模糊查找

如上图&#xff0c;我们当前路径下有三个文件&#xff0c;分别为helloworld.c以及helloworld和1.c&#xff0c;直接输入命令ls则显示所有文件&#xff0c;我们可以利用ls 加*的方向进行模糊查找。 输入ls 目录名 形式的命令行&#xff0c;则是对该目录名下的文件全部进行显示&a…

Linux下没有包含头文件(不知是哪个)导致编译无法通过的解决心得

最近写程序的时候编译出错了&#xff0c;提示信息为&#xff1a;invalid use of undefined type fb_var_screeninfo。显示根据英文知道是没有定义 fb_var_screeninfo这个类型&#xff0c;明显是缺少了某个头文件&#xff0c;但是缺少哪个头文件以及有什么又快又好的解决方法呢&…

Linux编译程序时加-I指定头文件位置

Linux下编译出现以下错误&#xff0c;错误的原因是在/usr/local/arm/arm-2009q3/bin/../arm-none-linux-gnueabi/libc/usr/include/freetype/config/下找不到ftheader.h&#xff0c;而我到该目录下看&#xff0c;发现路径是这样的rootubuntu:/usr/local/arm/arm-2009q3/arm-non…

关于源文件用不同的编码方式编写,会导致执行结果不一样的现象及解决方法

如果我们编写以下程序&#xff0c;并分别另存为ANSI和UTF-8两种不同的编码方式保存&#xff0c;放到Linux下编译并运行如下图&#xff0c;两端相同的程序以不同的编码方式保存编译后的运行结果不一样&#xff0c;./ansi采用ANSI编码方式&#xff0c;会自动采用GBK方式来保存中文…

arm-linux-gcc静态编译和动态编译的区别

很多教程会提到加上-static是静态编译&#xff0c;但对于新手来说没有用例子来说明可能不太好理解&#xff0c;今天我就介绍一下关于这方面知识的一个例子&#xff1a; 最近在做一个关于freetype字体的东西&#xff0c;需要依赖freetype官方提供的库&#xff0c;我已经把电脑这…

从0到1写RT-Thread内核——线程定义及切换的实现

从0写RT-Thread内核之线程定义及切换的实现具体可以分为以下六步来实现 一&#xff1a;分别定义线程栈、线程函数、线程控制块&#xff1b; ALIGN(RT_ALIGN_SIZE)//设置4字节对齐 /* 定义线程栈 */ rt_uint8_t rt_flag1_thread_stack[512]; rt_uint8_t rt_flag2_thread_stack…

从0到1写RT-Thread内核——临界段的保护

临界段就是一段在执行的时候不能被中断的代码段&#xff0c;在RT-Thread里&#xff0c;临界段最常出现的就是对全局变量的操作&#xff08;类似Linux下的锁&#xff09;。RT-Thread对临界段的保护是直接把中断全部关了&#xff0c;NMI FAULT和硬FAULT除外。下图是3个关于中断屏…

从0到1写RT-Thread内核——空闲线程与阻塞延时的实现

在之前写的另外一篇文章——<从0到1写RT-Thread内核——线程定义及切换的实现>中线程体内的延时使用的是软件延时&#xff0c;即还是让CPU空等来达到延时的效果。RTOS中的延时叫阻塞延时&#xff0c;即线程需要延时的时候&#xff0c;线程会放弃CPU的使用权&#xff0c;C…

从0到1写RT-Thread内核——支持多优先级

在本章之前&#xff0c;RT-Thread还没有支持多优先级&#xff0c;我们手动指定了第一个运行的线程&#xff0c;并在此之后三个线程&#xff08;包括空闲线程&#xff09;互相切换&#xff0c;在本章中我们加入优先级的功能&#xff0c;第一个运行的程序是就绪列表里优先级最高的…

AD软件之模块化原理图

首先我们创建两个原理图文件 然后我们在Sheet2.SchDoc里放置一个页面符并双击绿色的方框 选择目标文件 我们选择我们刚才创建的Sheet4.SchDoc 然后在 视图——>面板——>Navigator选项 里点一下交互式导航 就可以看到Sheet4.SchDoc被添加到Sheet2.SchDoc下面了 通过上面…

AD软件操作技巧

本文介绍一些关于AD软件的实用小操作&#xff0c;这些小技巧可以大大的减少我们的工作量 一.批量操作丝印&#xff08;或者操作别的东西也可以&#xff0c;主要是凸显批量操作的思想&#xff09; 如下图假设我们工程里有很多丝印和焊盘等等&#xff0c;现在我想改批量地修改丝…

V4L2框架分析

V4L2是Video for linux2的简称,为linux中关于视频设备的内核驱动。v4L2是针对uvc&#xff08;USB Video Class&#xff09;免驱usb设备的编程框架&#xff0c;主要用于采集usb摄像头等。 下图是V4L2的框架&#xff0c;首先系统核心层分配设置注册一个名为cdev结构体变量&#x…