Wannafly挑战赛24
题目连接
https://www.nowcoder.com/acm/contest/186#question
A.石子游戏
题解
注意到当石子个数为偶数的时候,每回合都会减少一堆偶数石子,因此,先手必胜.
我们可以不考虑奇数堆石子,因为必胜方始终可以动偶数堆.
当必败方将奇数堆分成一堆偶数和一堆奇数的时候,必胜方将新生成偶数堆移动到原有的偶数堆中即可抵消对方的移动.
代码
#include <iostream>
int main() {int n;std::cin >> n;int cnt = 0;for(int i = 1;i <= n;++i) {int tmp;std::cin >> tmp;if(tmp % 2 == 0) cnt ++;}if(cnt && cnt % 2 == 0) puts("Alice");else puts("Bob");
}
B.222333
题解
先暴力枚举m+nm+nm+n,然后从小到大枚举mmm,找到第一个适合的break即可.
代码
#include <iostream>typedef long long LL;
LL P;
LL mypow(LL x,int n,LL P) {LL res = 1;while(n) {if(n & 1) res = res * x % P;x = x*x % P;n >>= 1;}return res;
}int find(int s) {long long ans = 1;for(int x = 1;x < s;++x) {ans = (mypow(2,x,P) * mypow(3,s-x,P) % P + P-1)%P;if(ans == 0) return x;}return -1;
}int main() {while(std::cin >> P) {for(int i = 2;i <= P;++i) {int x = find(i);if(x != -1){std::cout << x << " " << i-x << std::endl;break;}}}}
C.失衡天平
题解
经典的动态规划问题.
我们记dp[i][j]dp[i][j]dp[i][j]表示考虑前iii个武器,取出来一些武器满足左边减去右边重量差为jjj,所能取得的最大重量和.
递推方程:
dp[i+1][j−w[i+1]]←dp[i][j]+w[i+1]dp[i+1][j-w[i+1]] \leftarrow dp[i][j] + w[i+1]dp[i+1][j−w[i+1]]←dp[i][j]+w[i+1]
dp[i+1][j+w[i+1]]←dp[i][j]+w[i+1]dp[i+1][j+w[i+1]] \leftarrow dp[i][j] + w[i+1]dp[i+1][j+w[i+1]]←dp[i][j]+w[i+1]
注意数组元素不能有负,因此需要给第二维一个basebasebase.
代码
int n,m;
int w[107];
int dp[107][20010];
const int base = 10000;
int main() {std::ios::sync_with_stdio(false);std::cin >> n >> m;for(int i = 1;i <= n;++i)std::cin >> w[i];for(int i = 0;i <= 100;++i) for(int j = 0;j <= 20000;++j)dp[i][j] = -100000;dp[0][base] = 0;for(int i = 0;i < n;++i) {for(int j = 0;j <= 20000;++j) {if(j < 0) continue;dp[i+1][j] = std::max(dp[i][j],dp[i+1][j]);if(j + w[i+1] <= 20000)dp[i+1][j+w[i+1]] = std::max(dp[i+1][j+w[i+1]],dp[i][j] + w[i+1]);if(j - w[i+1] >= 0)dp[i+1][j-w[i+1]] = std::max(dp[i+1][j-w[i+1]],dp[i][j] + w[i+1]);}}int ans = 0;for(int i = 0;i <= m;++i) {ans = std::max(ans,dp[n][base+i]);ans = std::max(ans,dp[n][base-i]);}std::cout << ans << std::endl;
}
D.无限手套
题解
一眼动态规划.
dp[i][j]dp[i][j]dp[i][j]表示考虑前iii种宝石,已经使用了jjj颗宝石,所获得的可能的力量之和.
递推方程:
dp[i+1][j]=∑t=0jdp[i][t](ai+1(j−t)2+bi+1(j−t)+1)dp[i+1][j] = \sum_{t = 0}^{j}{dp[i][t](a_{i+1}(j-t)^2+b_{i+1}(j-t)+1)}dp[i+1][j]=∑t=0jdp[i][t](ai+1(j−t)2+bi+1(j−t)+1)
将后面的部分展开
dp[i+1][j]=∑t=0j(ai+1∗dp[i][t]∗t2−(bi+1+2j∗ai+1)∗dp[i][t]∗t+(ai+1∗j2+bi+1∗j+1)∗dp[i][t])dp[i+1][j] = \sum_{t=0}^{j}(a_{i+1}*dp[i][t]*t^2 -(b_{i+1}+2j*a_{i+1})*dp[i][t]*t + (a_{i+1}*j^2+b_{i+1}*j+1)*dp[i][t])dp[i+1][j]=∑t=0j(ai+1∗dp[i][t]∗t2−(bi+1+2j∗ai+1)∗dp[i][t]∗t+(ai+1∗j2+bi+1∗j+1)∗dp[i][t])
继续化简得到
dp[i+1][j]=ai+1∑t=0jdp[i][t]t2−(bi+1+2j∗ai+1)∑t=0jdp[i][t]t+(ai+1∗j2+bi+1∗j+1)∑t=0jdp[i][t]dp[i+1][j] = a_{i+1}\sum_{t=0}^{j}dp[i][t]t^2 -(b_{i+1}+2j*a_{i+1})\sum_{t=0}^{j}dp[i][t]t + (a_{i+1}*j^2+b_{i+1}*j+1)\sum_{t=0}^{j}dp[i][t]dp[i+1][j]=ai+1∑t=0jdp[i][t]t2−(bi+1+2j∗ai+1)∑t=0jdp[i][t]t+(ai+1∗j2+bi+1∗j+1)∑t=0jdp[i][t]
如果我们令
sum2[j]=∑t=0jdp[i][t]t2sum_2[j] = \sum_{t=0}^{j}dp[i][t]t^2sum2[j]=∑t=0jdp[i][t]t2
sum1[j]=∑t=0jdp[i][t]tsum_1[j] = \sum_{t=0}^{j}dp[i][t]tsum1[j]=∑t=0jdp[i][t]t
sum0[j]=∑t=0jdp[i][t]sum_0[j] = \sum_{t=0}^{j}dp[i][t]sum0[j]=∑t=0jdp[i][t]
那么
dp[i+1][j]=ai+1sum2[j]−(bi+1+2j∗ai+1)sum1[j]+(ai+1∗j2+bi+1∗j+1)sum0[j]dp[i+1][j] = a_{i+1}sum_2[j] -(b_{i+1}+2j*a_{i+1})sum_1[j]+ (a_{i+1}*j^2+b_{i+1}*j+1)sum_0[j]dp[i+1][j]=ai+1sum2[j]−(bi+1+2j∗ai+1)sum1[j]+(ai+1∗j2+bi+1∗j+1)sum0[j]
转移就变成O(1)O(1)O(1)的了,空间上再滚动数组优化一下就过了.
代码
typedef long long LL;
const int N = 10007;
const LL P = 998244353;
LL dp[2][N],a[N],b[N],sum2[2][N],sum1[2][N],sum0[2][N];
LL Mul(LL a,LL b) {return a * b % P;
}
LL Add(LL a,LL b) {return (a + b) % P;
}
int n,q;
int main() {std::ios::sync_with_stdio(false);std::cin >> n;rep(i,1,n) {std::cin >> a[i] >> b[i];}sum0[1][0] = 1;rep(i,1,10000) {dp[1][i] = ((a[1]*i%P*i%P) + (b[1]*i%P) + 1)%P;sum2[1][i] = Add(sum2[1][i-1],dp[1][i]*i%P*i%P);sum1[1][i] = Add(sum1[1][i-1],dp[1][i]*i%P);sum0[1][i] = Add(sum0[1][i-1],dp[1][i]);}rep(i,2,n) {rep(j,0,10000) {dp[i&1][j] = (Mul(a[i],sum2[(i+1)&1][j]) - Mul(b[i]+2*j*a[i]%P,sum1[(i+1)&1][j]) + Mul((a[i]*j%P*j%P+b[i]*j+1)%P,sum0[(i+1)&1][j]) + P )% P;sum0[i&1][j] = dp[i&1][j];sum1[i&1][j] = dp[i&1][j]*j%P;sum2[i&1][j] = dp[i&1][j]*j%P*j%P;if(j) {sum0[i&1][j] = Add(sum0[i&1][j],sum0[i&1][j-1]);sum1[i&1][j] = Add(sum1[i&1][j],sum1[i&1][j-1]);sum2[i&1][j] = Add(sum2[i&1][j],sum2[i&1][j-1]);}}memset(sum0[(i+1)&1],0,sizeof(sum0[(i+1)&1]));memset(sum1[(i+1)&1],0,sizeof(sum1[(i+1)&1]));memset(sum2[(i+1)&1],0,sizeof(sum2[(i+1)&1]));}std::cin >> q;while(q--){int x;std::cin >> x;std::cout << dp[n&1][x] << std::endl;}return 0;
}
E.旅行
题解
还没看…
F. wyf的超级多项式
题解
很棒的一道题,学了很多知识.
我们考虑FnF_nFn的递推公式,猜测
Fn=c1Fn−1+c2Fn−2+...+ckFn−kF_n = c_1F_{n-1}+c_2F_{n-2}+...+c_kF_{n-k}Fn=c1Fn−1+c2Fn−2+...+ckFn−k
下面我们需要求出c1,c2,...,ck.c_1,c_2,...,c_k.c1,c2,...,ck.
令c0=−1c_0 = -1c0=−1,我们将递推式整理一下得到:
c0Fn+c1Fn−1+c2Fn−2+...+ckFn−k=0c_0F_n + c_1F_{n-1}+c_2F_{n-2}+...+c_kF_{n-k} = 0c0Fn+c1Fn−1+c2Fn−2+...+ckFn−k=0
由于前FiF_{i}Fi的通项公式已经给出了,我们可以将其代入得到:
[c0a1v1nc0a2v2nc0a3v3n...c0akvknc1a1v1n−1c1a2v2n−1c1a3v3n−1...c1akvkn−1c2a1v1n−2c2a2v2n−2c2a3v3n−2...c2akvkn−2...............cka1v1n−kcka2v2n−kcka3v3n−k...ckakvkn−k]\left[ \begin{matrix} c_0a_1v_1^n & c_0a_2v_2^n & c_0a_3v_3^n & ...& c_0a_kv_k^n\\ c_1a_1v_1^{n-1} & c_1a_2v_2^{n-1} & c_1a_3v_3^{n-1} & ...& c_1a_kv_k^{n-1}\\ c_2a_1v_1^{n-2} & c_2a_2v_2^{n-2} & c_2a_3v_3^{n-2} & ...& c_2a_kv_k^{n-2}\\ ... & ... & ... & ... & ...\\ c_ka_1v_1^{n-k} & c_ka_2v_2^{n-k} & c_ka_3v_3^{n-k} & ...& c_ka_kv_k^{n-k}\\ \end{matrix} \right] ⎣⎢⎢⎢⎢⎡c0a1v1nc1a1v1n−1c2a1v1n−2...cka1v1n−kc0a2v2nc1a2v2n−1c2a2v2n−2...cka2v2n−kc0a3v3nc1a3v3n−1c2a3v3n−2...cka3v3n−k...............c0akvknc1akvkn−1c2akvkn−2...ckakvkn−k⎦⎥⎥⎥⎥⎤
上面矩阵中所有的项之和等于000.
首先,分析一下这个矩阵,每一行的和肯定不能为000了,因为它使我们要求的答案,那么我们可以利用充分条件构造每一列都是000,这样整个矩阵所有项的和就是000了.
这么构造是有原因的,每一列形式都很相似,可以归结到多项式中去.
记G(x)=ck+ck−1x+...+c0xkG(x) = c_k + c_{k-1}x + ... + c_0x^kG(x)=ck+ck−1x+...+c0xk,显然v1,v2...,vkv_1,v_2...,v_kv1,v2...,vk是G(x)G(x)G(x)的kkk个零点,因此我们得到G(x)=a(x−v1)(x−v2)...(x−vk)G(x) = a(x-v_1)(x-v_2)...(x-v_k)G(x)=a(x−v1)(x−v2)...(x−vk)
又由于c0=−1c_0 = -1c0=−1,得到a=−1a = -1a=−1,
所以G(x)=−(x−v1)(x−v2)...(x−vk)G(x) = -(x-v_1)(x-v_2)...(x-v_k)G(x)=−(x−v1)(x−v2)...(x−vk)
ccc序列即GGG函数的系数,因此求出了GGG就可以确定ccc了.
对于这种形式的多项式展开,我们使用分治FFT/NTTFFT/NTTFFT/NTT就可以在O(nlogn2)O(nlogn^2)O(nlogn2)时间内做到了.
代码
#include <iostream>
#include <algorithm>
#include <cstring>
#define pr(x) std::cout << #x << ':' << x << std::endl
#define rep(i,a,b) for(int i = a;i <= b;++i)
#define clr(x) memset(x,0,sizeof(x))
#define setinf(x) memset(x,0x3f,sizeof(x))typedef long long LL;
const int N = 1 << 20;
const int P = 1004535809;
const int G = 3;
const int NUM = 20;LL wn[NUM];
LL a[N], b[N];LL quick_mod(LL a, LL b, LL m)
{LL ans = 1;a %= m;while(b){if(b & 1){ans = ans * a % m;b--;}b >>= 1;a = a * a % m;}return ans;
}void GetWn()
{for(int i = 0; i < NUM; i++){int t = 1 << i;wn[i] = quick_mod(G, (P - 1) / t, P);}
}
void Rader(LL a[], int len)
{int j = len >> 1;for(int i = 1; i < len - 1; i++){if(i < j) std::swap(a[i], a[j]);int k = len >> 1;while(j >= k){j -= k;k >>= 1;}if(j < k) j += k;}
}void NTT(LL a[], int len, int on)
{Rader(a, len);int id = 0;for(int h = 2; h <= len; h <<= 1){id++;for(int j = 0; j < len; j += h){LL w = 1;for(int k = j; k < j + h / 2; k++){LL u = a[k] % P;LL t = w * a[k + h / 2] % P;a[k] = (u + t) % P;a[k + h / 2] = (u - t + P) % P;w = w * wn[id] % P;}}}if(on == -1){for(int i = 1; i < len / 2; i++)std::swap(a[i], a[len - i]);LL inv = quick_mod(len, P - 2, P);for(int i = 0; i < len; i++)a[i] = a[i] * inv % P;}
}void Conv(LL a[], LL b[], int n)
{NTT(a, n, 1);NTT(b, n, 1);for(int i = 0; i < n; i++)a[i] = a[i] * b[i] % P;NTT(a, n, -1);
}
LL v[N],F[N];LL C[N];inline int expand(int x){int res = 1;while(res < x) res <<= 1;res <<= 1;return res;
}void solve(int l,int r,LL Ans[]) {if(r == l) {Ans[0] = P-v[l];Ans[1] = 1;return ;}int mid = (l + r) / 2;int lft = mid - l + 1;int rgt = r - mid;LL *LA = new LL[(lft+1)*2],*RA = new LL[(rgt+1)*2];solve(l,mid,LA);solve(mid+1,r,RA);rep(i,0,lft) a[i] = LA[i];rep(i,0,rgt) b[i] = RA[i];int len = 1;while(len <= r-l+1) len <<= 1;rep(i,lft+1,len) a[i] = 0;rep(i,rgt+1,len) b[i] = 0;NTT(a,len,1);NTT(b,len,1);rep(i,0,len) a[i] = a[i] * b[i];NTT(a,len,-1);rep(i,0,r-l+1) Ans[i] = a[i];
}
int n,k;
int main()
{GetWn();std::ios::sync_with_stdio(false);std::cin >> n >> k;rep(i,1,k) {std::cin >> v[i];}rep(i,1,k) {std::cin >> F[i];}solve(1,k,C);rep(i,k+1,n) {rep(j,1,k) {F[i] = (F[i] + ((P-C[k-j] % P)*F[i-j] % P)) % P;}}std::cout << F[n] << std::endl;return 0;
}