作业信息
1、证明3.44和3.45的正确性
g(x,y)=1K∑i=1Kgi(x,y)g(x,y)=\frac{1}{K}\sum_{i=1}^K g_i(x,y)g(x,y)=K1∑i=1Kgi(x,y)
E[g(x,y)]=f(x,y)+E[n(x,y)]=f(x,y)E[g(x,y)]=f(x,y)+E[n(x,y)]=f(x,y)E[g(x,y)]=f(x,y)+E[n(x,y)]=f(x,y)
D[g]=E[(g−E[g])2]=E[g2]−E[g]2=E[f2+2f(n1+n2+...+nK)+n12+...+nK2+∑i,jninjK2]−E[g]2=E[f2]+1KE[n2]−E[f]2=1KE[n2]−0=1K(E[n2]−E[n]2)=1KD[n]D[g]=E[(g-E[g])^2]=E[g^2]-E[g]^2 =E[f^2+\frac{2f(n_1+n_2+...+n_K)+n_1^2+...+n_K^2+\sum_{i,j}n_in_j}{K^2}]-E[g]^2 = E[f^2]+\frac{1}{K}E[n^2]-E[f]^2=\frac{1}{K}E[n^2]-0=\frac{1}{K}(E[n^2]-E[n]^2)=\frac{1}{K}D[n]D[g]=E[(g−E[g])2]=E[g2]−E[g]2=E[f2+K22f(n1+n2+...+nK)+n12+...+nK2+∑i,jninj]−E[g]2=E[f2]+K1E[n2]−E[f]2=K1E[n2]−0=K1(E[n2]−E[n]2)=K1D[n]
故
σg(x,y)2=1Kσn(x,y)2\sigma^2_{g(x,y)} = \frac{1}{K}\sigma^2_{n(x,y)}σg(x,y)2=K1σn(x,y)2
2、 请计算如下两个向量与矩阵的卷积计算结果。
[1,2,3,4,5,4,3,2,1]∗[2,0,−2][1,2,3,4,5,4,3,2,1] * [2,0,-2][1,2,3,4,5,4,3,2,1]∗[2,0,−2]
设a=[1,2,3,4,5,4,3,2,1],b=[2,0,−2]a = [1,2 ,3, 4, 5, 4, 3, 2, 1],b =[2,0,-2]a=[1,2,3,4,5,4,3,2,1],b=[2,0,−2]
设aaa的下标从000到888,bbb的下标从000到222,
那么c=a∗bc = a*bc=a∗b,则ccc的下标从000到111111
根据卷积公式:c[x]=∑t=−ooooa[t]∗b[x−t]c[x] = \sum_{t = -oo}^{oo} a[t]*b[x-t]c[x]=∑t=−ooooa[t]∗b[x−t]
c[0]=a[0]∗b[0]=2c[0] = a[0]*b[0] = 2c[0]=a[0]∗b[0]=2
c[1]=a[0]∗b[1]+a[1]∗b[0]=4c[1] = a[0]*b[1]+a[1]*b[0] = 4c[1]=a[0]∗b[1]+a[1]∗b[0]=4
c[2]=a[0]∗b[2]+a[1]∗b[1]+a[2]∗b[0]=4c[2] = a[0]*b[2]+a[1]*b[1]+a[2]*b[0] = 4c[2]=a[0]∗b[2]+a[1]∗b[1]+a[2]∗b[0]=4
c[3]=a[1]∗b[2]+a[2]∗b[1]+a[3]∗b[0]=4c[3] = a[1]*b[2]+a[2]*b[1]+a[3]*b[0] = 4c[3]=a[1]∗b[2]+a[2]∗b[1]+a[3]∗b[0]=4
c[4]=a[2]∗b[2]+a[3]∗b[1]+a[4]∗b[0]=4c[4] = a[2]*b[2]+a[3]*b[1]+a[4]*b[0] = 4c[4]=a[2]∗b[2]+a[3]∗b[1]+a[4]∗b[0]=4
c[5]=a[3]∗b[2]+a[4]∗b[1]+a[5]∗b[0]=0c[5] = a[3]*b[2]+a[4]*b[1]+a[5]*b[0] = 0c[5]=a[3]∗b[2]+a[4]∗b[1]+a[5]∗b[0]=0
c[6]=a[4]∗b[2]+a[5]∗b[1]+a[6]∗b[0]=−4c[6] = a[4]*b[2]+a[5]*b[1]+a[6]*b[0] = -4c[6]=a[4]∗b[2]+a[5]∗b[1]+a[6]∗b[0]=−4
c[7]=a[5]∗b[2]+a[6]∗b[1]+a[7]∗b[0]=−4c[7] = a[5]*b[2]+a[6]*b[1]+a[7]*b[0] = -4c[7]=a[5]∗b[2]+a[6]∗b[1]+a[7]∗b[0]=−4
c[8]=a[6]∗b[2]+a[7]∗b[1]+a[8]∗b[0]=−4c[8] = a[6]*b[2]+a[7]*b[1]+a[8]*b[0] = -4c[8]=a[6]∗b[2]+a[7]∗b[1]+a[8]∗b[0]=−4
c[9]=a[7]∗b[2]+a[8]∗b[1]=−4c[9] = a[7]*b[2]+a[8]*b[1] = -4c[9]=a[7]∗b[2]+a[8]∗b[1]=−4
c[10]=a[8]∗b[2]−2c[10] = a[8]*b[2] -2c[10]=a[8]∗b[2]−2
故ccc数组是[2,4,4,4,0,−4,−4,−4,−2][2,4,4,4,0,-4,-4,-4,-2][2,4,4,4,0,−4,−4,−4,−2]
根据二维卷积公式:
c[x,y]=∑s∑ta[s,t]∗b[x−s,y−t]c[x,y] = \sum_s\sum_ta[s,t]*b[x-s,y-t]c[x,y]=∑s∑ta[s,t]∗b[x−s,y−t]
可知,卷积结果为
[−13−13−204−3−6−44−4211−3−7−63−6415−3−11−48−10317−7−1125−10615−8−56−4−698−3−13−3−242]\left[ \begin{matrix} -1&3&-1&3&-2&0&4\\-3&-6&-4&4&-4&2&11\\-3&-7&-6&3&-6&4&15\\-3&-11&-4&8&-10&3&17\\-7&-11&2&5&-10&6&15\\-8&-5&6&-4&-6&9&8\\-3&-1&3&-3&-2&4&2 \end{matrix} \right]⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡−1−3−3−3−7−8−33−6−7−11−11−5−1−1−4−6−426334385−4−3−2−4−6−10−10−6−2024369441115171582⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤
3. 证明拉普拉斯变换具有旋转不变形
∇f(x,y)=∂2f∂x2+∂2f∂y2\nabla f(x,y)=\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}∇f(x,y)=∂x2∂2f+∂y2∂2f
我们假设新的点为(x1,y1)(x_1,y_1)(x1,y1)
并且假设(x1,y1)(x_1,y_1)(x1,y1)是由(x,y)(x,y)(x,y)顺时针旋转θ\thetaθ得到的。
那么有公式x=x1∗cosθ−y1∗sinθx = x_1*cos\theta-y_1*sin\thetax=x1∗cosθ−y1∗sinθ,y=x1∗sinθ+y1∗cosθy=x1*sin\theta+y_1*cos\thetay=x1∗sinθ+y1∗cosθ
从而有∂f∂x1=∂f∂x∂x∂x1+∂f∂y∂y∂x1=∂f∂xcosθ+∂f∂ysinθ\frac{\partial f}{\partial x_1}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial x_1} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial x_1}=\frac{\partial f}{\partial x}cos\theta+\frac{\partial f}{\partial y}sin\theta∂x1∂f=∂x∂f∂x1∂x+∂y∂f∂x1∂y=∂x∂fcosθ+∂y∂fsinθ
∂2f∂x12=∂2f∂x2∂x∂x1cosθ+∂2f∂y2∂y∂x1sinθ=∂2f∂x2cos2θ+∂2f∂y2sin2θ\frac{\partial^2 f}{\partial x_1^2}=\frac{\partial^2 f}{\partial x^2}\frac{\partial x}{\partial x_1}cos\theta+\frac{\partial^2 f}{\partial y^2}\frac{\partial y}{\partial x_1}sin\theta=\frac{\partial^2 f}{\partial x^2}cos^2\theta+\frac{\partial^2 f}{\partial y^2}sin^2\theta∂x12∂2f=∂x2∂2f∂x1∂xcosθ+∂y2∂2f∂x1∂ysinθ=∂x2∂2fcos2θ+∂y2∂2fsin2θ
∂2f∂y12=−∂2f∂x2∂x∂y1sinθ+∂2f∂y2∂y∂y1cosθ=∂2f∂x2sin2θ+∂2f∂y2cos2θ\frac{\partial^2 f}{\partial y_1^2}=-\frac{\partial^2 f}{\partial x^2}\frac{\partial x}{\partial y_1}sin\theta + \frac{\partial^2 f}{\partial y^2}\frac{\partial y}{\partial y_1}cos\theta=\frac{\partial^2 f}{\partial x^2}sin^2\theta+\frac{\partial^2 f}{\partial y^2}cos^2\theta∂y12∂2f=−∂x2∂2f∂y1∂xsinθ+∂y2∂2f∂y1∂ycosθ=∂x2∂2fsin2θ+∂y2∂2fcos2θ
∂2f∂x12+∂2f∂y12=∂2f∂x2+∂2f∂y2\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial y_1^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}∂x12∂2f+∂y12∂2f=∂x2∂2f+∂y2∂2f
证明完成。