[ZJOI2005]午餐(贪心+dp)

首先若只有一个窗口,利用贪心,按吃饭时间从大到小排序即可

正确性证明:

定义 eat[i] = 第i个人的吃饭时间,time[i] = 第i个人的打饭时间

延长时间T[i]=max(eat[i]- ∑j=i+1ntimej\sum\limits_{j=i+1}^ntime_jj=i+1ntimej ,0)

最后的集合时间为∑j=1ntimej\sum\limits_{j=1}^ntime_jj=1ntimej + max{T[i] , i∈[1,N]}

将人按照eat大小从大到小排序后,易证

此时max{T[i] , i∈[1,N]}最小,而∑j=1ntimej\sum\limits_{j=1}^ntime_jj=1ntimej为定值,

所以将人按照eat大小从大到小排序后,最后集合时间最短

也可以结合图理解一下:

图中蓝色是打饭时间,绿色是吃饭时间

易得答案是所有打饭时间之和(定值)加上虚线右边支出来的一截的最大长度,

所以我们要尽量让支出来的长度小

因为吃饭时间长的就更容易支出去,理所当然的应该尽可能往前放,所以将人按吃饭时间从大到小排序

拓展到两个窗口,人们排队的顺序仍然要满足吃饭慢的先打饭,问题是怎么分队,不难想到dp:

定义 dp[i][j][k] 表示

前i个人,在1号窗口打饭总时间j,在2号窗口打饭总时间k,最早吃完饭的时间

然后分别讨论将第i个人放在1号窗口和将第i个人放在2号窗口的情况即可

但这样明显内存会爆炸,所以我们考虑优化一下空间

仔细一想,发现可以去掉一维

因为 j+k=前i个人打饭时间总和,为定值,

所以 k 可以用 前i个人打饭时间总和-j 表示,不需要再单独维护这一维

因此,dp[i][j] 表示前i个人,在1号窗口打饭总时间j,最早吃完饭的时间

#include<bits/stdc++.h>
using namespace std;
const int N=210;
struct node{int a,b;
}s[N];
bool cmp(node x,node y){return x.b>y.b;
}
int n,sum[N],dp[N][N*N];
int main(){scanf("%d",&n);for(int i=1;i<=n;i++)scanf("%d%d",&s[i].a,&s[i].b);sort(s+1,s+n+1,cmp);for(int i=1;i<=n;i++)sum[i]=sum[i-1]+s[i].a;memset(dp,127,sizeof(dp));dp[0][0]=0;for(int i=1;i<=n;i++){for(int j=0;j<=sum[i];j++){if(j>=s[i].a) dp[i][j]=min(dp[i][j],max(dp[i-1][j-s[i].a],j+s[i].b));dp[i][j]=min(dp[i][j],max(dp[i-1][j],sum[i]-j+s[i].b));}}int ans=2147483647;for(int i=0;i<=sum[n];i++)ans=min(ans,dp[n][i]);printf("%d\n",ans);return 0;
}

参考博客:

https://www.luogu.org/blog/davidblog/solution-p2577
https://phantomagony.github.io/2018/08/21/ZJOI2005-%E5%8D%88%E9%A4%90%EF%BC%88dp%EF%BC%8C%E8%B4%AA%E5%BF%83%EF%BC%89/

图片转自:
https://phantomagony.github.io/2018/08/21/ZJOI2005-%E5%8D%88%E9%A4%90%EF%BC%88dp%EF%BC%8C%E8%B4%AA%E5%BF%83%EF%BC%89/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/320172.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【图论】【模板】静态仙人掌(luogu 5236)

【模板】静态仙人掌 题目大意 给你一个无向仙人掌图&#xff08;保证每条边至多出现在一个简单回路中的无向图&#xff09;&#xff0c;问你两个点之间的最短路距离 输入样例#1 9 10 2 1 2 1 1 4 1 3 4 1 2 3 1 3 7 1 7 8 2 7 9 2 1 5 3 1 6 4 5 6 1 1 9 5 7输出样例#1 5 …

Wannafly挑战赛24D-无限手套【dp,生成函数】

正题 题目链接:https://ac.nowcoder.com/acm/contest/186/D 题目大意 mmm个二元组(ai,bi)(a_i,b_i)(ai​,bi​)&#xff0c;对于一个序列xxx的贡献是∏i1n(aixi2bixi1)\prod_{i1}^n(a_ix_i^2b_ix_i1)i1∏n​(ai​xi2​bi​xi​1) qqq次询问给出nnn求在xi≥0x_i\geq 0xi​≥0且…

SCF: 简单配置门面

Simple Configuration Facade, 简写为 SCF。是 代码 和 外部配置 (properties文件, 环境变量&#xff0c;系统/命令行参数, yaml文件, 等等)之间的一层抽象. 命名上和另一个著名组件slf4j (Simple Logging Facade for Java)相似, 在配置领域的地位也和slf4j &#xff08;.NET可…

字符串(AC自动机(fail tree))

传送门 注意&#xff1a;注释中的那段代码是不能用的 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<queue> using namespace std; typedef long long ll; const int N2000010; struct Edge{int v,nxt;}ed…

武汉工程大学2020GPLT选拔赛(上)

比赛链接 A L1-1 I LOVE WIT 模拟&#xff0c;每个字母单独一行&#xff0c;前面的空格按规律输出。可以直接输出&#xff0c;也可以模拟过程 #include<bits/stdc.h> using namespace std; int main(){string s"I LOVE WIT";for(int i0;i<s.size();i){fo…

【矩阵乘法】【倍增】美食家(luogu 6772)

美食家 题目大意 给你一个有向图&#xff0c;边权为经过所需时间 每个点有一个点权&#xff0c;有些点还有有特殊的点权 当你到达一个点后&#xff0c;可以获得该点的点权&#xff08;重复经过可以重复获得&#xff0c;但不能停留&#xff09;&#xff0c;若在某个时间到某个…

.net core实践系列之短信服务-为什么选择.net core(开篇)

前言从今天我将会写.net core实战系列&#xff0c;以我最近完成的短信服务作为例子。该系列将会尽量以最短的时间全部发布出来。源码也将优先开源出来给大家。源码地址&#xff1a;https://github.com/SkyChenSky/Sikiro.SMS.NET CORE简介ASP.NET Core 是一个跨平台的高性能开源…

P3172-[CQOI2015]选数【dp,容斥】

正题 题目链接:https://www.luogu.com.cn/problem/P3172 题目大意 求有多少个长度为NNN的值域在[L,R][L,R][L,R]这个区间的序列满足它们的gcdgcdgcd恰好是KKK。 解题思路 dpdpdp容斥思想 我们先让L⌊LK−1K⌋,R⌊RK⌋L\lfloor\frac{LK-1}{K}\rfloor,R\lfloor\frac{R}{K}\rfl…

博弈论总结

前言 本篇为博弈论总结&#xff0c;文章会按题目类型分类。 基础铺垫——必胜点和必败点的介绍 P点&#xff1a;必败点&#xff0c;换而言之&#xff0c;就是谁处于此位置&#xff0c;则在双方操作正确的情况下必败。 N点&#xff1a;必胜点&#xff0c;处于此情况下&#x…

牛客网【每日一题】5月8日题目精讲 codeJan与旅行

比赛链接&#xff1a; 文章目录题目描述题解&#xff1a;时间限制&#xff1a;C/C 1秒&#xff0c;其他语言2秒 空间限制&#xff1a;C/C 262144K&#xff0c;其他语言524288K 64bit IO Format: %lld题目描述 codeJan 非常喜欢旅行。现在有 n 个城市排在一条线上&#xff0c;并…

.netcore consul实现服务注册与发现-集群完整版

一、Consul的集群介绍Consul Agent有两种运行模式&#xff1a;Server和Client。这里的Server和Client只是Consul集群层面的区分&#xff0c;与搭建在Cluster之上的应用服务无关&#xff0c; 以Server模式运行的Consul Agent节点用于维护Consul集群的状态&#xff0c;官方建议每…

【矩阵乘法】【倍增】WYC(luogu 3597)

WYC 题目大意 给你一个有向图&#xff0c;让你求图中的kkk短路&#xff08;非简单路径&#xff09; 输入样例# 6 6 11 1 2 1 2 3 2 3 4 2 4 5 1 5 3 1 4 6 3输出样例#1 4数据范围 1⩽n⩽40&#xff0c;1⩽m⩽1000&#xff0c;1⩽k⩽10181\leqslant n\leqslant 40&#xff…

匹配(树形DP)

传送门 题目描述&#xff1a; 有一张无向联通图 G⟨V,E⟩ &#xff0c;其中顶点数 |V|n &#xff0c;边数 |E|n−1 。求有多少种方案使得删边后残余图中的最大匹配数恰好为 m 的倍数。 题解&#xff1a; 这道题看起来是求最大匹配&#xff0c;其实关系不大&#xff0c;正解…

博弈论讲解(一)

常见的博弈论有巴什博弈&#xff0c;威佐夫博弈&#xff0c;尼姆博弈&#xff0c;斐波那契博弈等等&#xff0c;今天暂时讲几个 文章目录一.巴什博弈证明&#xff1a;代码二.威佐夫博奕结论&#xff1a;代码&#xff1a;三.环形博弈结论证明代码&#xff1a;一.巴什博弈 巴什博…

浅谈surging服务引擎中的rabbitmq组件和容器化部署

1、前言上个星期完成了surging 的0.9.0.1 更新工作&#xff0c;此版本通过nuget下载引擎组件&#xff0c;下载后&#xff0c;无需通过代码build集成&#xff0c;引擎会通过Sidecar模式自动扫描装配异构组件来构建服务引擎&#xff0c;而这篇将介绍浅谈surging服务引擎中的rabbi…

csp-j/s总结

文章目录csp-jcsp-s总结csp-j T1傻逼题(我是傻逼&#xff09;&#xff0c;手残把&打成整除了&#xff08;大样例还对了gg&#xff09; T2乱推&#xff0c;然后打了个O(n)O(n)O(n)&#xff0c;却WA了15分&#xff1f; T3看了看&#xff0c;修改不会相互影响&#xff1f;那不…

51nod1220-约数之和【莫比乌斯反演,杜教筛】

正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId1220 题目大意 给出nnn&#xff0c;求∑i1n∑j1nσ(i∗j)\sum_{i1}^n\sum_{j1}^n\sigma(i*j)i1∑n​j1∑n​σ(i∗j) 其中σ\sigmaσ表示约数和。 解题思路 首先有结论σ(i∗j)∑x∣i∑y∣j[gcd(x,y)1]…

CDQ分治与整体二分

首先说明&#xff0c;CDQ分治与整体二分都是离线算法 CDQ分治&#xff1a; 流程&#xff1a; 1.我们要解决一系列问题&#xff0c;这些问题一般包含修改和查询操作&#xff0c;可以把这些问题排成一个序列&#xff0c;用一个区间[L,R]表示。 2.分。递归处理左边区间[L,M]和…

博弈论讲解(二)

文章目录斐波那契博弈问题&#xff1a;结论证明&#xff1a;尼姆博奕(Nimm Game)问题&#xff1a;结论&#xff1a;证明&#xff1a;代码&#xff1a;公平组合博弈&#xff08;Impartial Combinatori Games&#xff09;理论知识&#xff08;1&#xff09;、若面临末状态者为获胜…

.net core实践系列之短信服务-架构设计

前言上篇《.net core实践系列之短信服务-为什么选择.net core&#xff08;开篇&#xff09;》简单的介绍了&#xff08;水了一篇&#xff09;.net core。这次针对短信服务的架构设计和技术栈的简析。源码地址&#xff1a;https://github.com/SkyChenSky/Sikiro.SMS为什么需要架…