UOJ#351-新年的叶子【树的直径,数学期望】

正题

题目链接:https://uoj.ac/problem/351


题目大意

给出nnn个点的一棵树,开始所有点都是白色,每次随机点黑一个叶子(可以重复点),求期望多少次能使得白色点构成的图直径发生变化。
答案对998244353998244353998244353取模

1≤n≤5×1051\leq n\leq 5\times 10^51n5×105


解题思路

考虑什么时候会直径会产生变化。

假设直径的长度LLL为偶数,那么所有的直径都有一个共同的中心点,设为xxx。此时我们需要在xxx的两棵子树中各自找到两个深度为L2\frac L 22L的叶子,那么就可以组成一条直径。

换句话说,把所有深度为L2\frac L 22L叶子取出来,然后把它们按照在那个根的子树中分成若干个集合。然后当我们染色到只有一个集合没有全部染色的时候就结束了。

那么现在问题变成给出若干个集合和一些集合外的点,每次染一个点,求期望多少次能够染成只有一个集合没有全部染色。
考虑总共有nnn个点,有iii个已经染色了,那么染色下任意一个的概率就是in\frac{i}{n}ni,期望就是ni\frac{n}{i}in

预处理fi=∑j=1injf_i=\sum_{j=1}^i\frac{n}{j}fi=j=1ijn,然后我们可以考虑把集合中的点排列然后按顺序染,最后除上方案就好了。

假设所有集合中总共有mmm个点,目前枚举到的集合有kkk个点,然后染到这个集合剩下ppp个点的时候其他集合都染完了,那么期望就是
1m!(kp)×((m−p)!−(k−p)(m−p−1)!)×p!×(fm−fp)\frac{1}{m!}\binom{k}{p}\times \left(\ (m-p)!-(k-p)(m-p-1)!\ \right)\times p!\times (f_m-f_p)m!1(pk)×( (mp)!(kp)(mp1)! )×p!×(fmfp)
(中间的减法是为了保证最后剩下的ppp个点前面一定是一个不是枚举集合中的点,然后fm−fpf_m-f_pfmfp是因为我们假设不在集合中的点已经染色了,那么剩下需要染m−pm-pmp个)。

至于直径长度是奇数的情况,那么有两个中心点,也就是有一条中心边,分成两个集合按照上面的搞就好了。

时间复杂度:O(n)O(n)O(n)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=5e5+10,P=998244353;
struct node{ll to,next;
}a[N<<1];
ll n,m,cnt,mxdis,root,tot,ans;
ll ls[N],v[N],pre[N],fac[N],inv[N],f[N];
void addl(ll x,ll y){a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;return;
}
void findL(ll x,ll fa,ll dis){if(dis>mxdis)mxdis=dis,root=x;for(ll i=ls[x];i;i=a[i].next){ll y=a[i].to;if(y==fa)continue;pre[y]=x;findL(y,x,dis+1);}return;
}
void markL(ll x,ll fa,ll dis,ll k){if(dis==mxdis/2&&(!a[ls[x]].next))v[k]++;for(ll i=ls[x];i;i=a[i].next){ll y=a[i].to;if(y==fa)continue;markL(y,x,dis+1,k);}return;
}
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{scanf("%lld",&n);for(ll i=1,x,y;i<n;i++){scanf("%lld%lld",&x,&y);addl(x,y);addl(y,x);}ll k=0;for(ll i=1;i<=n;i++)k+=!(a[ls[i]].next);inv[0]=inv[1]=fac[0]=1;for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;for(ll i=1;i<N;i++)f[i]=(f[i-1]+k*inv[i]%P)%P;for(ll i=1;i<N;i++)fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;findL(1,0,0);mxdis=0;findL(root,0,0);if(mxdis&1){ll x=root;for(ll i=1;i<=mxdis/2;i++)x=pre[x];ll y=pre[x];markL(x,y,0,1);markL(y,x,0,2);cnt=2;}else{ll x=root;for(ll i=1;i<=mxdis/2;i++)x=pre[x];for(ll i=ls[x];i;i=a[i].next)cnt++,markL(a[i].to,x,1,cnt);}for(ll i=1;i<=cnt;i++)m+=v[i];for(ll i=1;i<=cnt;i++)for(ll j=1;j<=v[i];j++){ll w=(f[m]-f[j]+P)%P;w=(fac[m-j]-(v[i]-j)*fac[m-j-1]%P+P)%P*fac[j]%P*w%P;(ans+=w*inv[m]%P*C(v[i],j)%P)%=P;}printf("%lld\n",ans); return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/317763.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

cf1504. Travelling Salesman Problem

cf1504. Travelling Salesman Problem 题意&#xff1a; n个城市&#xff0c;编号1~n&#xff0c;每个城市有美丽值a[i]&#xff0c;现在要从城市1出发&#xff0c;其他所有城市走一遍&#xff0c;最后回到城市1&#xff0c;城市i到j的花费为max(ci,aj-ai)&#xff0c;ci为第…

[NOIP-S 2020]游记(附考前注意事项)

呜呼起飞T1&#xff1a;排水系统T2&#xff1a;字符串匹配T3&#xff1a;移球游戏T4&#xff1a;微信步数总述考前注意事项T1&#xff1a;排水系统 嗯—— 怎么说呢&#xff1f;&#xff1f; 比赛开始后迅速通读三遍题 顶着第一题肯定是打卡题的心态 哪怕是恶心模拟也得上&…

模板:二维线段树(线段树套线段树)

文章目录问题解析单点修改询问完整代码标记永久化代码所谓二维线段树&#xff0c;就是有两个维度的线段树 (逃) 问题 给出一个矩形 要求支持以下操作&#xff1a; 1.询问一个子矩形的最值 2.修改某一个单点的值 解析 使用线段树套线段树&#xff0c;来解决二维动态问题 注意…

程序猿修仙之路--数据结构之你是否真的懂数组?

数据结构但凡IT江湖侠士&#xff0c;算法与数据结构为必修之课。早有前辈已经明确指出&#xff1a;程序算法数据结构 。要想在之后的江湖历练中通关&#xff0c;数据结构必不可少。数据结构与算法相辅相成&#xff0c;亦是阴阳互补之法。开篇说道数组&#xff0c;几乎每个IT江…

P5643-[PKUWC2018]随机游走【min-max容斥,dp】

正题 题目链接:https://www.luogu.com.cn/problem/P5643 题目大意 给出nnn个点的一棵树&#xff0c;一个人从点xxx开始随机游走&#xff0c;然后QQQ次询问给出一个点集SSS&#xff0c;求期望多少步这个人会经过这个点集中的所有点。 1≤n≤18,1≤Q≤50001\leq n\leq 18,1\leq…

Rolling The Polygon Gym - 102222B

Rolling The Polygon Gym - 102222B 题意&#xff1a; 给你一个多边形&#xff0c;给你内部一个点Q&#xff0c;多边形在平面上滚动一周&#xff08;当有一个边第二次触地滚动停止&#xff09;&#xff0c;问Q的轨迹长度 题解&#xff1a; 计算几何题目 自己一直不是很擅长…

[杂题训练]CF1228E Another Filling the Grid(容斥),CF936C Lock Puzzle(构造)

文章目录T1&#xff1a;CF1228E Another Filling the GridsolutioncodeT2&#xff1a;CF936C Lock PuzzlesolutioncodeT1&#xff1a;CF1228E Another Filling the Grid 点我 solution 反过来思考&#xff0c;用所有方案数➖不合法方案数 很容易想到的是——容斥&#xff01…

Asp.Net Core 轻松学-经常使用异步的你,可能需要看看这个文章

前言事情的起因是由于一段简单的数据库连接代码引起&#xff0c;这段代码从语法上看&#xff0c;是没有任何问题&#xff1b;但是就是莫名其妙的报错了&#xff0c;这段代码极其简单&#xff0c;就是打开数据库连接&#xff0c;读取一条记录&#xff0c;然后立即更新到数据库中…

CF1146F: Leaf Partition(树形dp)

解析 阴间dp题qwq 不难设计dp&#xff1a; dpx,0:x节点没有被包含、子树内的方案数dp_{x,0}:x节点没有被包含、子树内的方案数dpx,0​:x节点没有被包含、子树内的方案数 dpx,1:x节点被包含、子树内的方案数dp_{x,1}:x节点被包含、子树内的方案数dpx,1​:x节点被包含、子树内的…

Take Your Seat Gym - 102222D

Take Your Seat Gym - 102222D 题意&#xff1a; 第一次是n个人坐飞机&#xff0c;按照1到n的顺序登机&#xff0c;第一个人登机牌丢了&#xff0c;他随机做一个座位&#xff0c;2到n个人上来按照自己的登机牌坐座位&#xff0c;如果他的座位被坐了&#xff0c;就在随机找一个…

CF446D-DZY Loves Games【高斯消元,矩阵乘法】

正题 题目链接:https://www.luogu.com.cn/problem/CF446D 题目大意 给出nnn个点mmm条边的一张无向图&#xff0c;一些点有陷阱&#xff0c;走到时会损失一条生命&#xff0c;总共有kkk条生命&#xff0c;求从111出发随机游走到nnn没有死亡且到终点时仅剩一条命的概率。 1≤n≤…

「BJOI2019」奥术神杖(AC自动机+DP)

文章目录titlesolutioncodetitle solution 令MagicViVjVk...MagicV_i\times V_j\times V_k...MagicVi​Vj​Vk​... 这里对Magicc\sqrt[c]{Magic}cMagic​有一个很巧妙的转换——取对数 Magicc(Magic)1celoge(Magic)1c\sqrt[c]{Magic}(Magic)^{\frac{1}{c}}e^{log_e(Magic)^{…

try.dot.net 的正确使用姿势

来源&#xff1a;https://www.cnblogs.com/7tiny/p/10277600.html【简介】微软官方前不久发布了 try.dot.net 这个有趣的网址&#xff0c;开始只是图个新鲜看了一下&#xff0c;后面通过自身实践过后&#xff0c;发现这着实算是个“有趣”的站点&#xff01;首先我们大概地列举…

A - TOYS POJ - 2318

A - TOYS POJ - 2318 题意&#xff1a; 一个盒子中有n个隔板&#xff0c;分出n1个空间&#xff08;从左往右空间的编号分别是0…n&#xff09;&#xff0c;&#xff08;隔板之间不会相交&#xff0c;且按照从左往右的顺序给出&#xff09;&#xff0c;现在给你m个坐标的物品&…

CF1016F:Road Projects(树形dp)

解析 好题 意思就是我没做出来 稍微分析一下就可以发现加边的位置始终是一样的 换句话说询问完全可以O1 关键就是找到这条边加在哪里 一开始我完全把这道题看成了彻头彻尾的数据结构题 容易想到二分答案 然后上个树状树组搞一搞就行了 但是遇到一个关键的问题 它无法解决加边…

CF750E-New Year and Old Subsequence【动态dp】

正题 题目链接:https://www.luogu.com.cn/problem/CF750E 题目大意 给出一个长度为nnn的数字字符串&#xff0c;qqq次询问给出其的一个子串ttt&#xff0c;询问至少要删除多少个数字才能使得其中包含201720172017这个子序列却不包含201620162016这个子序列。 1≤n,q≤21051\l…

[BJOI2017]魔法咒语(AC自动机+DP+矩阵快速幂)

文章目录titlesolutioncodetitle solution 针对数据编程才是坠吊的&#xff01;&#xff01;&#xff01; 观察数据&#xff0c;发现分隔数据的LLL跨度过大&#xff0c;没有衔接——推测很有可能是分数据做法 ①&#xff1a;考虑L≤100L\le100L≤100的情况 可以暴力DPDPDP转移…

P6242-[模板]线段树3【吉司机线段树】

正题 题目链接:https://www.luogu.com.cn/problem/P6242 题目大意 给出一个长度为nnn的序列aaa&#xff0c;mmm次要求支持操作 区间加上一个值kkk区间所有aia_iai​变为min{ai,k}min\{a_i,k\}min{ai​,k}区间求和区间求最大值区间求历史最大值 1≤n,q≤51051\leq n,q\leq 5\…

洛谷P1912:诗人小G(二分栈、决策单调性)

二分栈&#xff0c;就是通过二分维护的栈 &#xff08;逃&#xff09; 解析 本题的决策单调性可以说是显然 但是本题是同维度&#xff08;其实只有一维&#xff09;自左向右转移&#xff0c;分治的写法是不能奏效的 所以我们使用决策点调性的另一种实现方法&#xff1a;二分栈…

[国家集训队]middle(二分+主席树[中位数思维题])

文章目录点击查看solutioncode点击查看 solution 简单口胡一下就跑 考虑二分答案ansansans 区间[x1,x2],x1∈[a,b]&#xff0c;x2∈[c,d][x1,x2],x1∈[a,b]&#xff0c;x2∈[c,d][x1,x2],x1∈[a,b]&#xff0c;x2∈[c,d] 大于等于ansansans的设为111&#xff0c;小于ansans…