[AtCoder Educational DP Contest] Y - Grid 2(容斥 + dp)

problem

luogu

给一个 H×WH\times WH×W 的网格,每一步只能向右或向下走,给出一些坐标,这些坐标对应的位置不能经过,求从左上角 (1,1)(1,1)(1,1) 走到右下角 (H,W)(H,W)(H,W) 的方案数,答案对 109+710^9+7109+7 取模。

1≤H,W≤1e5,1≤n≤30001\le H,W\le 1e5,1\le n\le 30001H,W1e5,1n3000

solution

f(i,j):f(i,j):f(i,j): 在位置 (i,j)(i,j)(i,j) 的方案数显然已经不行了。

关注到障碍物的数量非常少,考虑从障碍物的角度入手。

这种在网格图上只有右边和下边的走法抽象成数学模型就是组合数。

(x1,y1)(x_1,y_1)(x1,y1)(x2,y2)(x_2,y_2)(x2,y2) 的方案数即为 (x2−x1+y2−y1x2−x1)\binom{x_2-x_1+y_2-y_1}{x_2-x_1}(x2x1x2x1+y2y1)

这种方案数包含所有经过不同的若干个障碍物的情况。

我们考虑容斥,至少经过 000 个障碍物 −- 至少经过 111 个障碍物 +++ 至少经过两个障碍物 …\dots

这是普通的容斥,是总集合靠着子集加加减减来求得。

S=A1+(A2−A1⋂A2)+(A3−(A1⋃A2)⋂A3)+...+(An−(A1⋃⋯⋃An−1)⋂An)S=A_1+(A_2-A_1\bigcap A_2)+(A_3-(A_1\bigcup A_2)\bigcap A_3)+...+(A_n-(A_1\bigcup\dots\bigcup A_{n-1})\bigcap A_n)S=A1+(A2A1A2)+(A3(A1A2)A3)+...+(An(A1An1)An)

每次从剩余元素中,把属于 AiA_iAi 的取走,直到取完总集合。

f(i):f(i):f(i): 只经过第 iii 个障碍物的方案数。

将障碍物按 xxx 坐标升序排列,相同则按 yyy 升序。

把最后终点也当作障碍物即可。

code

#include <bits/stdc++.h>
using namespace std;
#define maxn 200005
#define int long long 
#define mod 1000000007
int n, r, c;
int f[maxn], fac[maxn], inv[maxn];
struct node { int x, y; }p[maxn];
int qkpow( int x, int y ) {int ans = 1;while( y ) {if( y & 1 ) ans = ans * x % mod;x = x * x % mod;y >>= 1;}return ans;
}
int C( int n, int m ) {return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
void init( int n = 2e5 ) {fac[0] = inv[0] = 1;for( int i = 1;i <= n;i ++ ) fac[i] = fac[i - 1] * i % mod;inv[n] = qkpow( fac[n], mod - 2 );for( int i = n - 1;i;i -- ) inv[i] = inv[i + 1] * (i + 1) % mod;
}
signed main() {scanf( "%lld %lld %lld", &r, &c, &n ); init();for( int i = 1;i <= n;i ++ ) scanf( "%d %d", &p[i].x, &p[i].y );p[++ n] = (node){ r, c };sort( p + 1, p + n + 1, []( node a, node b ){ return a.x == b.x ? a.y < b.y : a.x < b.x; } );for( int i = 1;i <= n;i ++ ) f[i] = C( p[i].x + p[i].y - 2, p[i].x - 1 );for( int i = 1;i <= n;i ++ )for( int j = i + 1;j <= n;j ++ )if( p[i].y <= p[j].y )( f[j] -= f[i] * C(p[j].x - p[i].x + p[j].y - p[i].y, p[j].x - p[i].x) ) %= mod;printf( "%lld\n", (f[n] + mod) % mod );return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316309.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#并行编程(5):需要知道的异步

异步与并行的联系大家知道“并行”是利用CPU的多个核心或者多个CPU同时执行不同的任务&#xff0c;我们不关心这些任务之间的依赖关系。但是在我们实际的业务中&#xff0c;很多任务之间是相互影响的&#xff0c;比如统计车间全年产量的运算要依赖于各月产量的统计结果。假如你…

[CodeForces1603D] Artistic Partition(四边形不等式 + 决策单调性优化dp + 分治 + 线性筛 + 数论分块)

problem codeforces 对于给定的正整数 l≤l\leql≤&#xff0c;定义 c(l,r)c(l,r)c(l,r) 为满足下列条件的正整数对 (i,j)(i,j)(i,j) 的数量&#xff1a; l≤i≤j≤rl\leq i\leq j\leq rl≤i≤j≤r&#xff1b;gcd⁡(i,j)≥l\gcd(i,j)\geq lgcd(i,j)≥l。 给定正整数 k≤nk\…

P3714 [BJOI2017]树的难题

P3714 [BJOI2017]树的难题 题意&#xff1a; 给你一棵 n 个点的无根树。 树上的每条边具有颜色。一共有 m 种颜色&#xff0c;编号为 1 到 m&#xff0c;第 i 种颜色的权值为 ci。 对于一条树上的简单路径&#xff0c;路径上经过的所有边按顺序组成一个颜色序列&#xff0c;…

从壹开始 [ Id4 ] 之一║ 授权服务器 IdentityServer4 开篇讲计划书

哈喽大家周四好&#xff01;时间过的很快&#xff0c;现在已经是三月份了&#xff0c;我的 IdentityServer4 教程也拖了一定的时间了&#xff0c;正好最近有精力学新东西了&#xff0c;主要中间被小伙伴要求写一个管理后台&#xff0c;目前1.0已经上线&#xff08;《权限后台系…

P2664 树上游戏

P2664 树上游戏 题意&#xff1a; 给一个长度为 n 的颜色序列&#xff0c;定义 s(i,j) 为 i 到 j 的颜色数量。以及 sumi∑j1ns(i,j)sum_{i}\sum_{j1}^{n}s(i,j)sumi​∑j1n​s(i,j) 现在求所有的sumisum_{i}sumi​ 题解&#xff1a; 待补 代码&#xff1a;

[SDOI2019] 热闹的聚会与尴尬的聚会

problem luogu-P5361 他的联系薄上有 nnn 位好友&#xff0c;他们两两之间或者互相认识&#xff0c;或者互相不认识。 小 Q 希望在周六办一个热闹的聚会&#xff0c;再在周日办一个尴尬的聚会。 一场热闹度为 ppp 的聚会请来了任意多位好友&#xff0c;对于每一位到场的好友…

.NET 泛型,详细介绍

今天的文章是因为再给一个朋友讲这个的时候随手记录下整理出来的。说白了就是把前辈们曾经给我吹过的我又吹了出去。泛型&#xff1a;是C# FrameWork 2.0 时代 加入进来的&#xff0c;可以说对与Net开发人员来说泛型是无处不再的&#xff0c;喜欢看源码的同学&#xff0c;可能会…

P2257 YY的GCD

P2257 YY的GCD 题意&#xff1a; 求 1≤x≤N,1≤y≤M1 \leq x \leq N,1 \leq y \leq M1≤x≤N,1≤y≤M 且gcd(x, y) 为质数的 (x,y) 有多少对。 题解&#xff1a; 莫比乌斯反演 代码&#xff1a; #include <bits/stdc.h> #include <unordered_map> #define…

【刷题记录】[AtCoder Educational DP Contest] 经典dp类型及方法题解合集

文章目录A - Frog 1B - Frog 2C - VacationD - Knapsack 1E - Knapsack 2F - LCSG - Longest PathH - Grid 1I - CoinsJ - SushiK - StonesL - DequeM - CandiesN - SlimesO - MatchingP - Independent SetQ - FlowersR - WalkS - Digit SumT - PermutationU - GroupingV - Sub…

程序员修神之路--问世间异步为何物?

菜菜哥&#xff0c;今天天气挺热的&#xff0c;我都穿裙子了说吧&#xff0c;什么事&#xff1f;&#xff1f;苦笑一下..... 老大说把所有的接口都改成异步操作异步好呀&#xff0c;最少比同步能提高吞吐量异步是怎么回事呢&#xff0c;能讲讲不&#xff1f;来&#xff0c;凑近…

P3455 [POI2007]ZAP-Queries

P3455 [POI2007]ZAP-Queries 题意&#xff1a; 求满足1≤x≤a,1≤y≤b1\leq x\leq a,1\leq y\leq b1≤x≤a,1≤y≤b&#xff0c;且gcd(x,y)dgcd(x,y)dgcd(x,y)d的二元组(x,y)的数量 题解&#xff1a; 莫比乌斯反演板子 代码&#xff1a; // Problem: P3455 [POI2007]ZAP…

.NET Core 使用MailKit发送电子邮件

点击上方蓝字关注“汪宇杰博客”发送邮件通知的功能在各种系统里都很常见。我的博客也能在有新评论、新回复&#xff0c;或者文章被其他网站引用时向管理员发送邮件。那么在.NET Core里&#xff0c;如何实现发送电子邮件呢&#xff1f;准备工作我的案例会利用微软outlook.com的…

P3327 [SDOI2015]约数个数和

P3327 [SDOI2015]约数个数和 题意&#xff1a; 设 d(x) 为 x 的约数个数&#xff0c;给定 n,m&#xff0c;求 ∑i1n∑j1md(i,j)\sum_{i1}^{n}\sum_{j1}^{m}d(i,j)∑i1n​∑j1m​d(i,j) 题解&#xff1a; 代码&#xff1a; // Problem: P3327 [SDOI2015]约数个数和 // Conte…

[CQOI2018] 解锁屏幕(状压dp)

problem luogu-P4460 solution 题面以及数据告诉我们显然是状压 dpdpdp。 设 f(s,i):f(s,i):f(s,i): 经过的点集 sss 最后一次画的点为 iii 的方案数。 直接枚举下一个之前没被画的点 jjj 转移即可。 f(s∣2j,j)←f(s,i)f(s|2^j,j)\leftarrow f(s,i)f(s∣2j,j)←f(s,i)。 …

C#并行编程(6):线程同步面面观

理解线程同步线程的数据访问在并行&#xff08;多线程&#xff09;环境中&#xff0c;不可避免地会存在多个线程同时访问某个数据的情况。多个线程对共享数据的访问有下面3种情形&#xff1a;多个线程同时读取数据&#xff1b;单个线程更新数据&#xff0c;此时其他线程读取数据…

P2522 [HAOI2011]Problem b

P2522 [HAOI2011]Problem b 题意&#xff1a; 对于给出的 n 个询问&#xff0c;每次求有多少个数对 (x,y)&#xff0c;满足 a≤x≤b&#xff0c;c≤y≤d&#xff0c;且 gcd(x,y)k&#xff0c;gcd(x,y) 函数为 x 和 y 的最大公约数。 题解&#xff1a; 这个题跟P3455 [POI20…

[十二省联考 2019] 异或粽子(可持久化字典树 + 二叉堆)

problem luogu-P5283 小粽是一个喜欢吃粽子的好孩子。今天她在家里自己做起了粽子。 小粽面前有 nnn 种互不相同的粽子馅儿&#xff0c;小粽将它们摆放为了一排&#xff0c;并从左至右编号为 111 到 nnn。 第 iii 种馅儿具有一个非负整数的属性值 aia_iai​。 每种馅儿的数…

.NET Core/Framework 创建委托以大幅度提高反射调用的性能

都知道反射伤性能&#xff0c;但不得不反射的时候又怎么办呢&#xff1f;当真的被问题逼迫的时候还是能找到解决办法的。为反射得到的方法创建一个委托&#xff0c;此后调用此委托将能够提高近乎直接调用方法本身的性能。&#xff08;当然 Emit 也能够帮助我们显著提升性能&…

[省选联考 2020 A/B 卷] 冰火战士(树状数组上二分)

文章目录problemsolution(10pts)code(10pts)solution(30pts)code(30pts)solution(60pts)code(60pts)solution(100pts)code(100pts)problem luogu-P6619 一场比赛即将开始。 每位战士有两个属性&#xff1a;温度和能量。 有两派战士&#xff1a; 冰系战士的技能会对周围造成…

P1829 [国家集训队]Crash的数字表格 / JZPTAB

P1829 [国家集训队]Crash的数字表格 / JZPTAB 题意&#xff1a; 求∑i1n∑j1mlcm(i,j)\sum_{i1}^{n}\sum_{j1}^{m}lcm(i,j)∑i1n​∑j1m​lcm(i,j) 1<n<m<1e7 结果mod20101009 题解&#xff1a; 跟这个题P3911 最小公倍数之和很相近&#xff0c;但是本题数据范围大…