最近同事对 .net core memcached 缓存客户端 EnyimMemcachedCore 进行了高并发下的压力测试,发现在 linux 上高并发下使用 async 异步方法读取缓存数据会出现大量失败的情况,比如在一次测试中,100万次读取缓存,只有12次成功,999988次失败,好恐怖。如果改为同步方法,没有一次失败,100%成功。奇怪的是,同样的压力测试程序在 Windows 上异步读取却没问题,100%成功。
排查后发现是2个地方使用的锁引起的,一个是 ManualResetEventSlim ,一个是 Semaphore ,这2个锁是在同步方法中使用的,但 aync 异步方法中调用了这2个同步方法,我们来分别看一下。
使用 ManualResetEventSlim 是在创建 Socket 连接时用于控制连接超时
var args = new SocketAsyncEventArgs();
using (var mres = new ManualResetEventSlim())
{
args.Completed += (s, e) => mres.Set();
if (socket.ConnectAsync(args))
{
if (!mres.Wait(timeout))
{
throw new TimeoutException("Could not connect to " + endpoint);
}
}
}
使用 Semaphore 是在从 EnyimMemcachedCore 自己实现的 Socket 连接池获取 Socket 连接时
if (!this.semaphore.WaitOne(this.queueTimeout))
{
message = "Pool is full, timeouting. " + _endPoint;
if (_isDebugEnabled) _logger.LogDebug(message);
result.Fail(message, new TimeoutException());
// everyone is so busy
return result;
}
为了弃用这个2个锁造成的异步并发问题,采取了下面2个改进措施:
1)对于 ManualResetEventSlim ,参考 corefx 中 SqlClient 的 SNITcpHandle 的实现,改用 CancellationTokenSource 控制连接超时
var cts = new CancellationTokenSource();
cts.CancelAfter(timeout);
void Cancel()
{
if (!socket.Connected)
{
socket.Dispose();
}
}
cts.Token.Register(Cancel);
socket.Connect(endpoint);
if (socket.Connected)
{
connected = true;
}
else
{
socket.Dispose();
}
2)对于 Semaphore ,根据同事提交的 PR ,将 Semaphore 换成 SemaphoreSlim ,用 SemaphoreSlim.WaitAsync 方法等待信号量锁
if (!await this.semaphore.WaitAsync(this.queueTimeout))
{
message = "Pool is full, timeouting. " + _endPoint;
if (_isDebugEnabled) _logger.LogDebug(message);
result.Fail(message, new TimeoutException());
// everyone is so busy
return result;
}
改进后,压力测试结果立马与同步方法一样,100% 成功!
为什么会这样?
我们到 github 的 coreclr 仓库(针对 .net core 2.2)中看看 ManualResetEventSlim 与 Semaphore 的实现源码,看能否找到一些线索。
(一)
先看看 ManualResetEventSlim.Wait 方法的实现代码(523开始):
1)先 SpinWait 等待
var spinner = new SpinWait();
while (spinner.Count < spinCount)
{
spinner.SpinOnce(sleep1Threshold: -1);
if (IsSet)
{
return true;
}
}
SpinWait 等待时间比较短,不会造成长时间阻塞线程。
在高并发下大量线程在争抢锁,所以大量线程在这个阶段等不到锁。
2)然后 Monitor.Wait 等待
try
{
// ** the actual wait **
if (!Monitor.Wait(m_lock, realMillisecondsTimeout))
return false; //return immediately if the timeout has expired.
}
finally
{
// Clean up: we're done waiting.
Waiters = Waiters - 1;
}
Monitor.Wait 对应的实现代码
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern bool ObjWait(bool exitContext, int millisecondsTimeout, object obj);
public static bool Wait(object obj, int millisecondsTimeout, bool exitContext)
{
if (obj == null)
throw (new ArgumentNullException(nameof(obj)));
return ObjWait(exitContext, millisecondsTimeout, obj);
}
最终调用的是一个本地库的 ObjWait 方法。
查阅一下 Monitor.Wait 方法的帮助文档:
Releases the lock on an object and blocks the current thread until it reacquires the lock. If the specified time-out interval elapses, the thread enters the ready queue.
Monitor.Wait 的确会阻塞当前线程,这在异步高并发下会带来问题,详见一码阻塞,万码等待:ASP.NET Core 同步方法调用异步方法“死锁”的真相。
(二)
再看看 Semaphore 的实现代码,它继承自 WaitHandle , Semaphore.Wait 实际调用的是 WaitHandle.Wait ,后者调用的是 WaitOneNative ,这是一个本地库的方法
[MethodImplAttribute(MethodImplOptions.InternalCall)]
private static extern int WaitOneNative(SafeHandle waitableSafeHandle, uint millisecondsTimeout, bool hasThreadAffinity, bool exitContext);
.net core 3.0 中有些变化,这里调用的是 WaitOneCore 方法
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern int WaitOneCore(IntPtr waitHandle, int millisecondsTimeout);
查阅一下 WaitHandle.Wait 方法的帮助文档:
Blocks the current thread until the current WaitHandle receives a signal, using a 32-bit signed integer to specify the time interval in milliseconds.
WaitHandle.Wait 也会阻塞当前线程。
2个地方在等待锁时都会阻塞线程,难怪高并发下会出问题。
(三)
接着阅读 SemaphoreSlim 的源码学习它是如何在 WaitAsync 中实现异步等待锁的?
public Task<bool> WaitAsync(int millisecondsTimeout, CancellationToken cancellationToken)
{
//...
lock (m_lockObj!)
{
// If there are counts available, allow this waiter to succeed.
if (m_currentCount > 0)
{
--m_currentCount;
if (m_waitHandle != null && m_currentCount == 0) m_waitHandle.Reset();
return s_trueTask;
}
else if (millisecondsTimeout == 0)
{
// No counts, if timeout is zero fail fast
return s_falseTask;
}
// If there aren't, create and return a task to the caller.
// The task will be completed either when they've successfully acquired
// the semaphore or when the timeout expired or cancellation was requested.
else
{
Debug.Assert(m_currentCount == 0, "m_currentCount should never be negative");
var asyncWaiter = CreateAndAddAsyncWaiter();
return (millisecondsTimeout == Timeout.Infinite && !cancellationToken.CanBeCanceled) ?
asyncWaiter :
WaitUntilCountOrTimeoutAsync(asyncWaiter, millisecondsTimeout, cancellationToken);
}
}
}
重点看 else 部分的代码,SemaphoreSlim.WaitAsync 造了一个专门用于等待锁的 Task —— TaskNode ,CreateAndAddAsyncWaiter 就用于创建 TaskNode 的实例
private TaskNode CreateAndAddAsyncWaiter()
{
// Create the task
var task = new TaskNode();
// Add it to the linked list
if (m_asyncHead == null)
{
m_asyncHead = task;
m_asyncTail = task;
}
else
{
m_asyncTail.Next = task;
task.Prev = m_asyncTail;
m_asyncTail = task;
}
// Hand it back
return task;
}
从上面的代码看到 TaskNode 用到了链表,神奇的等锁专用 Task —— TaskNode 是如何实现的呢?
private sealed class TaskNode : Task<bool>
{
internal TaskNode? Prev, Next;
internal TaskNode() : base((object?)null, TaskCreationOptions.RunContinuationsAsynchronously) { }
}
好简单!
那 SemaphoreSlim.WaitAsync 如何用 TaskNode 实现指定了超时时间的锁等待?
看 WaitUntilCountOrTimeoutAsync 方法的实现源码:
private async Task<bool> WaitUntilCountOrTimeoutAsync(TaskNode asyncWaiter, int millisecondsTimeout, CancellationToken cancellationToken)
{
// Wait until either the task is completed, timeout occurs, or cancellation is requested.
// We need to ensure that the Task.Delay task is appropriately cleaned up if the await
// completes due to the asyncWaiter completing, so we use our own token that we can explicitly
// cancel, and we chain the caller's supplied token into it.
using (var cts = cancellationToken.CanBeCanceled ?
CancellationTokenSource.CreateLinkedTokenSource(cancellationToken, default(CancellationToken)) :
new CancellationTokenSource())
{
var waitCompleted = Task.WhenAny(asyncWaiter, Task.Delay(millisecondsTimeout, cts.Token));
if (asyncWaiter == await waitCompleted.ConfigureAwait(false))
{
cts.Cancel(); // ensure that the Task.Delay task is cleaned up
return true; // successfully acquired
}
}
// If we get here, the wait has timed out or been canceled.
// If the await completed synchronously, we still hold the lock. If it didn't,
// we no longer hold the lock. As such, acquire it.
lock (m_lockObj)
{
// Remove the task from the list. If we're successful in doing so,
// we know that no one else has tried to complete this waiter yet,
// so we can safely cancel or timeout.
if (RemoveAsyncWaiter(asyncWaiter))
{
cancellationToken.ThrowIfCancellationRequested(); // cancellation occurred
return false; // timeout occurred
}
}
// The waiter had already been removed, which means it's already completed or is about to
// complete, so let it, and don't return until it does.
return await asyncWaiter.ConfigureAwait(false);
}
用 Task.WhenAny 等待 TaskNode 与 Task.Delay ,等其中任一者先完成,简单到可怕。
又一次通过 .net core 源码欣赏了高手是怎么玩转 Task 的。
【2019-5-6更新】
今天将 Task.WhenAny + Task.Delay 的招式用到了异步连接 Socket 的超时控制中
var connTask = _socket.ConnectAsync(_endpoint);
if (await Task.WhenAny(connTask, Task.Delay(_connectionTimeout)) == connTask)
{
await connTask;
}
原文地址:https://www.cnblogs.com/dudu/p/10812139.html
.NET社区新闻,深度好文,欢迎访问公众号文章汇总 http://www.csharpkit.com