CF372D. Choosing Subtree is Fun
Solution
想了一晚都不会,一觉醒来就悟了QwQQwQQwQ
之前一直想着如何用类似树形DPDPDP的方法求出每一个点的贡献再合并,然后突然发现直接枚举区间就行了。
考虑区间确定时,其实就是求区间内节点在原树上的斯坦纳树的点数。
我们枚举左端点lll,显然随着lll的增加,rrr时非降的,因此动态维护斯坦纳树的点数即可。
因为斯坦纳树的边数,就是每个关键点的深度和减去dfsdfsdfs序相邻的关键点的LCALCALCA的深度和,而点数为边数加一。每次操作会加入一个点,删除一个点,用setsetset维护关键点的dfsdfsdfs序,计算贡献即可。
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1e9+7;
const int MAXN=400005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
set<int> Set;
vector<int> e[MAXN];
int id[MAXN],dfn[MAXN],DFN=0,dep[MAXN],mn[18][MAXN],n,Log[MAXN],sum=0,k,ans=1,num=0,eul[MAXN],ID[MAXN];
void dfs(int x,int father)
{id[dfn[x]=++DFN]=x,dep[x]=dep[father]+1,ID[eul[x]=++num]=x;for (auto v:e[x])if (v!=father) {dfs(v,x);ID[++num]=x;}
}
void Init()
{for (int i=1;i<=num;i++) mn[0][i]=dep[ID[i]];for (int i=1;i<=17;i++)for (int j=1;j<=num-(1<<i)+1;j++) mn[i][j]=min(mn[i-1][j],mn[i-1][j+(1<<(i-1))]);
}
int getdep(int l,int r)
{l=eul[id[l]],r=eul[id[r]];if (l>r) swap(l,r);int x=Log[r-l+1];return min(mn[x][l],mn[x][r-(1<<x)+1]);
}
void add(int x)
{set<int>::iterator it=Set.lower_bound(x);int nxt,lst;if (it==Set.end()) nxt=*Set.begin(),it--,lst=*it;else if (it==Set.begin()) nxt=*it,lst=*Set.rbegin();else nxt=*it,it--,lst=*it;if (nxt==lst) sum+=getdep(lst,lst)+getdep(x,x)-getdep(x,lst)*2;else sum+=getdep(x,x)+getdep(lst,nxt)-getdep(x,nxt)-getdep(lst,x);Set.insert(x);
}
void del(int x)
{Set.erase(Set.find(x));if (!Set.size()) return; set<int>::iterator it=Set.lower_bound(x);int nxt,lst;if (it==Set.end()) nxt=*Set.begin(),it--,lst=*it;else if (it==Set.begin()) nxt=*it,lst=*Set.rbegin();else nxt=*it,it--,lst=*it;if (nxt==lst) sum-=getdep(lst,lst)+getdep(x,x)-getdep(x,lst)*2;else sum-=getdep(x,x)+getdep(lst,nxt)-getdep(x,nxt)-getdep(lst,x);
}
signed main()
{n=read(),k=read(),ans=1;for (int i=1,u,v;i<n;i++) u=read(),v=read(),e[u].PB(v),e[v].PB(u);Log[1]=0; for (int i=2;i<=n*2;i++) Log[i]=Log[i>>1]+1;dfs(1,0),Init(),Set.insert(dfn[1]);for (int l=1,r=1;l<n;l++){while (r<n&&sum+1<=k) r++,add(dfn[r]);if (sum+1>k) upmax(ans,r-l);else upmax(ans,r-l+1);del(dfn[l]);}printf("%d\n",ans);return 0;
}