CF1354F. Summoning Minions
Solution
VPVPVP结束十分钟后AC,qwqAC,qwqAC,qwq。
首先因为ai,bi≥0a_i,b_i \geq 0ai,bi≥0,所以所有东西全用一次答案不会变劣,留到最后的集合大小一定为kkk。
如果我们知道留到最后的集合S=x1,x2...xkS={x_1,x_2...x_{k}}S=x1,x2...xk,考虑让U−SU-SU−S中的点贡献最大,我们的方案显然是先加入x1,x2...xk−1{x_1,x_2...x_{k-1}}x1,x2...xk−1,然后把y∈U−Sy \in U-Sy∈U−S都插入删除一遍,再放入一个xkx_kxk,因此总贡献为:
(∑i=1k−1axi+bxi∗(i−1))+(∑i=1n−kbyi∗(k−1))+(k−1)bxk+axk(\sum_{i=1}^{k-1}a_{x_i}+b_{x_i}*(i-1))+(\sum_{i=1}^{n-k}b_{y_i}*(k-1))+(k-1)b_{x_k}+a_{x_k} (i=1∑k−1axi+bxi∗(i−1))+(i=1∑n−kbyi∗(k−1))+(k−1)bxk+axk
即
(∑i=1kaxi+bxi∗(i−1))+(∑i=1n−kbyi∗(k−1))(\sum_{i=1}^{k}a_{x_i}+b_{x_i}*(i-1))+(\sum_{i=1}^{n-k}b_{y_i}*(k-1)) (i=1∑kaxi+bxi∗(i−1))+(i=1∑n−kbyi∗(k−1))
于是我们发现一个性质:在SSS确定时,aia_iai的顺序不影响答案,bib_ibi从小到大答案最优。
因此我们将所有数按bib_ibi排序,再通过选择SSS来使答案最优,我们考虑DP,令fi,jf_{i,j}fi,j表示前iii个数中,已经选择了x1...xj{x_1...x_j}x1...xj的最大值。
转移时考虑枚举第iii个人加入SSS或不加入SSS的贡献:
fi,j=min(fi−1,j−1+ai+bi∗(j−1),fi−1,j+bi∗(k−1))f_{i,j}=min(f_{i-1,j-1}+a_i+b_i*(j-1),f_{i-1,j}+b_i*(k-1))fi,j=min(fi−1,j−1+ai+bi∗(j−1),fi−1,j+bi∗(k−1))
顺便记录方案即可。
时间复杂度O(nkT)O(nkT)O(nkT)
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1e9+7;
const int MAXN=5005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
int a[105],b[105],f[105][105],flag[105],frm[105][105],id[105];
vector<int> V;
signed main()
{int Case=read();while (Case--){memset(f,-INF,sizeof f);memset(frm,0,sizeof frm);memset(flag,0,sizeof flag);int n=read(),k=read();for (int i=1;i<=n;i++) a[i]=read(),b[i]=read(),id[i]=i;sort(id+1,id+n+1,[&](int x,int y){ return b[x]<b[y]; });V.clear();f[0][0]=0;for (int i=1;i<=n;i++)for (int j=0;j<=k;j++) {if (j&&upmax(f[i][j],f[i-1][j-1]+a[id[i]]+b[id[i]]*(j-1))) frm[i][j]=1;if (upmax(f[i][j],f[i-1][j]+b[id[i]]*(k-1))) frm[i][j]=2;}int nw=k;for (int i=n;i>=1;i--)if (frm[i][nw]==1) V.PB(id[i]),nw--;else flag[id[i]]=1;reverse(V.begin(),V.end());printf("%d\n",n*2-k);for (int i=0;i<k-1;i++) printf("%d ",V[i]);for (int i=1;i<=n;i++)if (flag[i]) printf("%d -%d ",i,i);printf("%d\n",V[k-1]);}return 0;
}