Codeforces Global Round 12 E. Capitalism 差分约束

传送门

题意:
在这里插入图片描述
思路: 一开始被题意迷惑了,没看出来差分约束,老菜鸡啦。首先看到aj=ai+1a_j=a_i+1aj=ai+1可以把aia_iai分成奇偶,让后这个图就变成一个二分图了。再考虑如何连边:
(1) 对于b=1b=1b=1的情况,aj=ai+1a_j=a_i+1aj=ai+1,转化成不等式就是ai<=aj−1a_i<=a_j-1ai<=aj1aj<=ai+1a_j<=a_i+1aj<=ai+1,所以建图方式为(j,i,−1)(j,i,-1)(j,i,1)(i,j,1)(i,j,1)(i,j,1)
(2) 对于b=0b=0b=0的情况,∣ai−aj∣=1|a_i-a_j|=1aiaj=1,去掉不等式又可以分成两种情况:
①① aj=ai+1a_j=a_i+1aj=ai+1 连边方式跟上面一样
②② ai=aj+1a_i=a_j+1ai=aj+1,转化成不等式ai<=aj+1a_i<=a_j+1ai<=aj+1aj<=ai−1a_j<=a_i-1aj<=ai1,连边为(j,i,1)(j,i,1)(j,i,1)(i,j,−1)(i,j,-1)(i,j,1)
可以发现第二种情况有四条边,即(i,j,1),(i,j,−1),(j,i,1),(j,i,−1)(i,j,1) ,(i,j,-1),(j,i,1),(j,i,-1)(i,j,1),(i,j,1),(j,i,1),(j,i,1)。但是对于(i,j,1)(i,j,1)(i,j,1)转化成不等式j−i<=1j-i<=1ji<=1,把(i,j,−1)(i,j,-1)(i,j,1)转成不等式j−i<=−1j-i<=-1ji<=1,当第一个成立的时候,第二个显然成立,所以只保留第一个就行啦。
让后跑差分约束就好啦,nnn比较小,直接floydfloydfloyd跑顺便判断一下负环就好啦。
这里用并查集判断的二分图。

//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;const int N=310,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;int n,m;
int g[N][N],p[N*2];int find(int x) { return x==p[x]? x:p[x]=find(p[x]); }bool check()
{for(int i=1;i<=n;i++) if(find(i)==find(i+n)) return true;return false;
}bool floyd()
{for(int k=1;k<=n;k++)for(int i=1;i<=n;i++){for(int j=1;j<=n;j++)g[i][j]=min(g[i][j],g[i][k]+g[k][j]);if(g[i][i]<0) return true;}return false;
}int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);scanf("%d%d",&n,&m);for(int i=1;i<=n*2;i++) p[i]=i;memset(g,0x3f,sizeof(g));for(int i=1;i<=n;i++) g[i][i]=0;for(int i=1;i<=m;i++){int a,b,op; scanf("%d%d%d",&a,&b,&op);g[a][b]=1; g[b][a]=-1;if(!op) g[b][a]=1;p[find(a)]=find(b+n);p[find(a+n)]=find(b);}if(check()||floyd()) { puts("NO"); return 0; }int ans=-1,id=0;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++)if(g[i][j]>ans) ans=g[i][j],id=i;}puts("YES");printf("%d\n",ans);for(int i=1;i<=n;i++) printf("%d ",g[id][i]);return 0;
}
/**/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/315517.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ARC114E - Paper Cutting 2(组合数学,概率与期望)

ARC114E - Paper Cutting 2 Solution 考场上时间不够&#xff0c;没刚出来QAQ。 做法和官解本质相同&#xff0c;只是官解运用期望的线性性直接导出答案&#xff0c;而这里是对于所有方案统计贡献在除以方案数&#xff0c;从期望的定义上计算答案。可能稍显复杂。 Part one…

8个月打磨,一份送给程序员的「分布式系统」合集

这里是Z哥的个人公众号每周五早8点 按时送达当然了&#xff0c;也会时不时加个餐&#xff5e;我的第「75」篇原创敬上整理好的文章目录在文末&#xff0c;可直接拉到最后是的&#xff0c;这份礼物最佳受众是程序员。但是&#xff0c;如果你不是程序员&#xff0c;相信这些能使你…

HDU - 6071 Lazy Running 同余最短路 + 分层

传送门 题意&#xff1a; 给定四个点构成一个环&#xff0c;给出四个点之间的距离&#xff0c;让后从222号点出发&#xff0c;最终回到222号点&#xff0c;求经过的距离>k>k>k的最小距离。 思路&#xff1a; 由于从222开始&#xff0c;最终在222结束&#xff0c;所以…

CF1398F

CF1398F Solution 我又来贡献暴力做法了。。。听说两只log不可能过1e6? 有一个显然的想法是&#xff1a; 我们先预处理一个aia_iai​表示第iii个位置的最长后缀长度&#xff0c;满足该后缀中不同时存在0和1。 假设我们要求xixixi的答案&#xff0c;那么一个位置jjj可以作…

【翻译】无需安装Python,就可以在.NET里调用Python库

原文地址&#xff1a;https://henon.wordpress.com/2019/06/05/using-python-libraries-in-net-without-a-python-installation/pythonnet这个屌爆的项目的出现&#xff0c;使得我们可以用一种新的方式&#xff0c;让C#可以和Python之间进行互操作。但是它的设置和部署可能有点…

Codeforces Round #706 (Div. 2) E. Garden of the Sun 思维构造

传送门 题意&#xff1a; 给你一个nmnmnm的矩阵&#xff0c;其中包含字符′.′.′.′和′X′X′X′&#xff0c;你可以将任何′.′.′.′改成′X′X′X′&#xff0c;现在问你能否通过修改一些′.′.′.′来使′X′X′X′联通且不存在环。保证原本的′X′X′X′没有任何两个相…

CF1067E Random Forest Rank(树形dp,概率与期望,线性代数)

CF1067E Random Forest Rank Solution 考虑树的邻接矩阵的秩的意义&#xff0c;不难发现相当于每个点找一个“代表”&#xff0c;对于一个点xxx&#xff0c;它的“代表”为一个与xxx相邻的结点&#xff0c;要求保证所有点的“代表”不重复&#xff0c;求能找到“代表”的点的…

Ocelot(六)- 架构图

简介Ocelot是一个用.NET Core实现并且开源的API网关&#xff0c;它功能强大&#xff0c;包括了&#xff1a;路由、请求聚合、服务发现、认证、鉴权、限流熔断、并内置了负载均衡器与Service Fabric、k8s 集成。这些功能只都只需要简单的配置即可完成。架构图Ocelot的目标是使用…

P5170 【模板】类欧几里得算法(类欧)

P5170 【模板】类欧几里得算法 Description 要求在O(lgn)O(lgn)O(lgn)的时间内求出&#xff1a; ∑i0n⌊aibc⌋\sum_{i 0}^n{\lfloor\frac{aib}{c}\rfloor}∑i0n​⌊caib​⌋ ∑i0ni⌊aibc⌋\sum_{i 0}^n{i\lfloor\frac{aib}{c}\rfloor }∑i0n​i⌊caib​⌋ ∑i0n⌊aibc⌋2…

AtCoder Beginner Contest 192 F - Potion 背包dp

传送门 题意&#xff1a; 给你nnn个数&#xff0c;让后让你选出来kkk个AAA&#xff0c;把他们求和&#xff0c;之后再递增kkk直到正好达到xxx&#xff0c;求最小的递增次数。 思路&#xff1a; 转化一下题意就是求∑Ax(modlen)\sum Ax(\bmod\ \ len)∑Ax(mod len)&#xff0…

基于Dapper的开源Lambda扩展,且支持分库分表自动生成实体

LnskyDB是基于Dapper的Lambda扩展,支持按时间分库分表,也可以自定义分库分表方法开源地址 https://github.com/liningit/LnskyDB在此非常感谢SkyChenSky其中lambda表达式的解析参考了他的开源项目下面是用ProductSaleByDayEntity作为示例,其中StatisticalDate为分库分表字段,如…

P4887 【模板】莫队二次离线(第十四分块(前体))

P4887 【模板】莫队二次离线&#xff08;第十四分块(前体)&#xff09; Solution 简单学习了一下二次离线莫队&#xff0c;写了个板子题。 这题直接莫队时间复杂度为O(Cnn)O(Cn\sqrt n)O(Cnn​)&#xff0c;其中C(14k)C\binom{14}{k}C(k14​)&#xff0c;显然不太行。 我们…

P1297 [国家集训队]单选错位 期望

传送门 题意&#xff1a; 思路&#xff1a; 手推了一下没想到还真的能过。 对于相邻的两个数aia_iai​和ai1a_{i1}ai1​&#xff0c;分两种情况讨论&#xff1a; (1) ai<ai1a_i<a_{i1}ai​<ai1​ 时&#xff0c;答案在[1,ai][1,a_i][1,ai​]的范围内概率为aiai1\fra…

也读《人月神话》:没有银弹的软件工程

一、关于人月神话这本书记得在上大学的时候&#xff0c;就经常听学长和老师讲起《人月神话》&#xff0c;但是却一直没有阅读。记得当时一听到这个书名&#xff0c;还以为是个神马科幻类别的书&#xff0c;结果是个软件工程方面的书籍。这本书是“图灵奖得主、“IBM360系统之父…

CF1088F. Ehab and a weird weight formula(倍增)

CF1088F. Ehab and a weird weight formula Solution 这题大概是个大力找性质题&#xff08;莫名感觉学习文化课有利于找性质&#xff1f;&#xff01;&#xff1f;&#xff09;。 性质1&#xff1a;不难发现一个点比它权值小的有且仅有一个&#xff08;最小权点除外&#x…

P6154 游走 概率dp

传送门 题意&#xff1a; 思路&#xff1a; 给你个DAGDAGDAG&#xff0c;由于每一条路径出现概率相等&#xff0c;那么期望就是总长度路径个数\frac{总长度}{路径个数}路径个数总长度​。设f[i]f[i]f[i]表示到iii这个点的总长度&#xff0c;g[i]g[i]g[i]表示到iii这个点路径的…

[译]如何在C#中调试LINQ查询

LINQ是我在C#中最喜欢的功能之一。它让代码看起来更漂亮美观。我们得到了一个易于编写和理解的简洁函数式语法。好吧&#xff0c;至少我们可以使用LINQ方法的语法风格。LINQ很难进行调试。我们无法知道该查询内部发生了什么。我们可以看到输入和输出&#xff0c;但这就是它的全…

CF1303F - Number of Components(并查集)

CF1303F - Number of Components Solution 思路还是有点妙的。 容易想到并查集&#xff0c;但是并查集不容易维护删边&#xff0c;怎么办呢&#xff1f; 我们考虑拆贡献&#xff0c;把加边的贡献和删边的贡献拆开&#xff0c;分别维护。 只加边就是四连通加边&#xff0c;算…

CodeForces - 375D Tree and Queries 树启 + 思维

传送门 题意&#xff1a; 思路&#xff1a; 很明显子树问题会想到树启&#xff0c;让后如何updateupdateupdate呢&#xff1f;一个显然的思路就是维护一个树状数组&#xff0c;查询次数>kj>k_j>kj​的个数。但是这样复杂度是O(nlog2n)O(nlog^2n)O(nlog2n)的&#xf…

WebSocket数据加密——AES与RSA混合加密

前言之前在写“一套简单的web即时通讯”&#xff0c;写到第三版的时候没什么思路&#xff0c;正好微信公众号看到一篇讲API交互加密&#xff0c;于是就自己搞了一套AES与RSA混合加密&#xff0c;无意中产生应用在WebSocket想法&#xff0c;好在思路都差不多&#xff0c;稍微改动…