传送门
文章目录
- 题意:
- 思路:
题意:
给你一个序列aaa,求一个最长的子序列[l,r][l,r][l,r]满足aimodm=ai+1modm=...=armodma_i\bmod m=a_{i+1}\bmod m=...=a_r\bmod maimodm=ai+1modm=...=armodm,其中m≥2m\ge2m≥2。
n≤2e5,ai≤1e18n\le2e5,a_i\le1e18n≤2e5,ai≤1e18
思路:
之前牛客做过一个类似的题,但是哪个题是要你找一个最小模数使得每个数模上他之后各不相同,这个题大同小异。
首先如果他们取模相等的话,那么每个相邻的两个之差的因数都可以作为mmm,问题转换成了求ci=ai+1−aic_i=a_{i+1}-a_ici=ai+1−ai数组中最长的gcdgcdgcd不为111的序列。
这个显然可以用尺取来解决,数越少gcdgcdgcd可能越大,满足单调性。用STSTST表预处理一下即可。
// Problem: D. Integers Have Friends
// Contest: Codeforces - Codeforces Round #736 (Div. 2)
// URL: https://codeforces.com/contest/1549/problem/D
// Memory Limit: 256 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;const int N=400010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;int n;
LL a[N],c[N];
LL f[N][25];
int len[N];
void init(int n)
{for(int i=1;i<=n;i++) len[i]=log2(i);for(int i=1;i<=n;i++) f[i][0]=c[i];int t=len[n]+1;for(int j=1;j<t;j++)for(int i=1;i<=n-(1<<j)+1;i++)f[i][j]=__gcd(f[i][j-1],f[i+(1ll<<(j-1))][j-1]);
}LL query(int l,int r) {int t=len[r-l+1];return __gcd(f[l][t],f[r-(1<<t)+1][t]);
}int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0); int _; scanf("%d",&_);while(_--) {scanf("%d",&n);for(int i=1;i<=n;i++) scanf("%lld",&a[i]);for(int i=1;i<=n-1;i++) c[i]=abs(a[i+1]-a[i]);init(n-1);int ans=1;for(int i=1,j=1;i<=n-1;i++) {while(j<=i&&query(j,i)==1) j++;ans=max(ans,i-j+2);}printf("%d\n",ans);}return 0;
}
/**/