点分治(简要讲解 + 模板)

树上点分治

思想

两个点之间的距离无非就是两种关系:我们约定dis[i]dis[i]dis[i]表示这个点到当前根节点的距离

  • dis[u]+dis[v]dis[u] + dis[v]dis[u]+dis[v],在同一个根节点的不同子树上。
  • dis[u]+dis[v]dis[u] + dis[v]dis[u]+dis[v],在同一个棵子树上。

树上点分治的思想就是通过改变根节点从而转化任意两点的距离为在同一个根节点下的情况。

举个例子

当我们选定1号节点作为我们的根节点时,我们可以简单的得到(三号节点的子树上的点到节点1, 4, 2, 7的距离,也就是不在三号节点子树上的点的距离)(4, 2子树同理)。

通过这一步转换我们只需要得到三号节点子树上的点之间的距离即可,这就是分治思想的体现,我们可以不断地递归最后只剩一个节点,这个节点的子树上的点到其子树上的点的距离就是确定的了,就是0嘛,只可能是它自己到它自己。

所以简而言之,点分治就是去不断地递归某个节点地子树,知道没有子树。

假如我们的点是连接成一串的,我们能任选一个点去当初始节点的子树吗?

这里显然是不能的,当我们选定的节点刚好是端点的时候,这个时候复杂度将会变成n2n^2n2,这完全违背了我们优化其的初衷。

于是这里有一个简单的优化方法,就是每次我们选取每颗子树的重心去充当根节点,这样的分治效果显然是最优的。

于是我们的树上点分治算法好像已近逐渐可以写出来了,我们通过下面这个例子来更加理解一下实现过程吧。

P3806 【模板】点分治1 + 代码

/*树上点分治
*/#include <bits/stdc++.h>using namespace std;const int INF = 0x3f3f3f3f;
const int N = 1e5 + 10;int head[N], to[N << 1], nex[N << 1], value[N << 1], cnt = 1;
int sz[N], maxsz[N], dis[N], pre[N], vis[N], judge[10000010], is_true[110], query[110], q[N];
int n, m, sum, root;inline int read() {int f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-')    f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}void get_root(int rt, int fa) {//简单的找重心sz[rt] = 1, maxsz[rt] = 0;for(int i = head[rt]; i; i = nex[i]) {if(vis[to[i]] || to[i] == fa)   continue;//加了一个vis判断,防止跑到已经访问过的根节点给上去。get_root(to[i], rt);maxsz[rt] = max(maxsz[rt], sz[to[i]]);sz[rt] += sz[to[i]];}maxsz[rt] = max(maxsz[rt], sum - sz[rt]);if(maxsz[rt] < maxsz[root]) root = rt;
}void get_dis(int rt, int fa) {//就是dfs树上最短路的实现过程。pre[++pre[0]] = dis[rt];//记录其子树的每个节点到根节点的距离。for(int i = head[rt]; i; i = nex[i]) {if(to[i] == fa || vis[to[i]]) continue;dis[to[i]] = dis[rt] + value[i];get_dis(to[i], rt);}
}void calc(int rt) {//核心。int p = 0;for(int i = head[rt]; i; i = nex[i]) {if(vis[to[i]])  continue;//同样的也是访问子树。dis[to[i]] = value[i];//这里一定要记得重置。pre[0] = 0;get_dis(to[i], rt);for(int j = 1; j <= pre[0]; j++)//查询有没有点到当前子树的点的距离是符合query中的要求的。for(int k = 1; k <= m; k++)if(query[k] >= pre[j])is_true[k] |= judge[query[k] - pre[j]];for(int j = 1; j <= pre[0]; j++)//记录我们judge中被标记的点,方便在下一次分治之前重置。if(pre[j] <= 1e7 + 5)//特判一下吧,题目的dis可能会到1e8,为了防止数组越界,q[++p] = pre[j], judge[pre[j]] = 1;}for(int i = 1; i <= p; i++)//不用memset重置,防止变成n^2的算法。judge[q[i]] = 0;
}void solve(int rt) {vis[rt] = judge[0] = 1;//置这个点被访问过,防止其子树上的点再次访问这个点。calc(rt);for(int i = head[rt]; i; i = nex[i]) {if(vis[to[i]])    continue;//我们肯定是找一个没有访问的子树上的点去进行下一次分治递归。sum = sz[to[i]], root = 0;maxsz[root] = INF;get_root(to[i], 0);solve(root);}
}void add(int x, int y, int w) {to[cnt] = y;nex[cnt] = head[x];value[cnt] = w;head[x] = cnt++;
}int main() {// freopen("in.txt", "r", stdin);n = read(), m = read();int x, y, w;for(int i = 1; i < n; i++) {//双向建边。x = read(), y = read(), w = read();add(x, y, w);add(y, x, w);}for(int i = 1; i <= m; i++)query[i] = read();root = 0;//寻找初始的递归根节点。maxsz[root] = INF;get_root(1, 0);solve(root);for(int i = 1; i <= m; i++)puts(is_true[i] ? "AYE" : "NAY");return 0;
}

[国家集训队]聪聪可可

/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-')    f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 2e4 + 10;int head[N], to[N << 1], nex[N << 1], value[N << 1], cnt = 1;int sz[N], visit[N], msz[N], dis[N], pre[N], now[N], tot, root, n, m, sum, ans;void add(int x, int y, int w) {to[cnt] = y;nex[cnt] = head[x];value[cnt] = w;head[x] = cnt++;
}void get_root(int rt, int fa) {sz[rt] = 1, msz[rt] = 0;for(int i = head[rt]; i; i = nex[i]) {if(to[i] == fa || visit[to[i]]) continue;get_root(to[i], rt);sz[rt] += sz[to[i]];msz[rt] = max(msz[rt], sz[to[i]]);}msz[rt] = max(msz[rt], sum - sz[rt]);if(msz[rt] < msz[root]) root = rt;
}void get_dis(int rt, int fa) {now[++tot] = dis[rt];for(int i = head[rt]; i; i = nex[i]) {if(to[i] == fa || visit[to[i]]) continue;dis[to[i]] = dis[rt] + value[i];get_dis(to[i], rt);}
}int num[4];int calc(int rt) {int ans = 0, sum = 0;for(int i = head[rt]; i; i = nex[i]) {if(visit[to[i]]) continue;dis[to[i]] = value[i];tot = 0;get_dis(to[i], rt);for(int j = 1; j <= tot; j++) {ans += num[(3 - (now[j] % 3)) % 3];}for(int j = 1; j <= tot; j++) {num[now[j] % 3]++;}}num[0] = num[1] = num[2] = 0;return ans;
}void solve(int rt) {visit[rt] = num[0] = 1;ans += calc(rt);for(int i = head[rt]; i; i = nex[i]) {if(visit[to[i]]) continue;sum = sz[to[i]];root = 0, msz[0] = inf;get_root(to[i], rt);solve(root);}
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%d", &n);for(int i = 1; i < n; i++) {int x, y, w;scanf("%d %d %d", &x, &y, &w);add(x, y, w);add(y, x, w);}root = 0, msz[0]  = inf, sum = n;get_root(1, 0);solve(root);int d = __gcd(ans * 2 + n, n * n);printf("%d/%d\n", (ans * 2 + n) / d, (n * n) / d);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314586.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在 alpine 中使用 NPOI

在 alpine 中使用 NPOIIntro在 .net 中常使用 NPOI 来做 Excel 的导入导出&#xff0c;NPOI 从 2.4.0 版本开始支持 .netstandard2.0&#xff0c;在 dotnet core 应用也可以用 DotNetCore.NPOI。对于 .NET Core 应用来说&#xff0c;如果没有特殊的需求&#xff0c;alpine 是最…

Educational Codeforces Round 16 C. Magic Odd Square 矩阵构造

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 给你一个奇数nnn&#xff0c;让你构造一个n∗nn*nn∗n的矩阵&#xff0c;矩阵的每个位置依次填上[1,n∗n]之内的数[1,n*n]之内的数[1,n∗n]之内的数&#xff0c;满足每行、每列、以及主对角线的和都是奇数。…

关于WCF、WebAPI、WebService之间的区别总结 分布式通信技术

早在1996年Gartner就前瞻性地提出了面向服务架构的思想(SOA)&#xff0c;SOA 的走红在很大程度上归功于 Web Service 标准的成熟和应用的普及。Service Oriented Ambiguity 中文一般理解为&#xff1a;面向服务架构&#xff0c;简称SOA&#xff0c;这个概念算得上微服务的鼻祖了…

LCA求解的四种模板

LCA求解的四种模板 或许更好的阅读体验 树剖在线求解LCA 思想 树剖这里就不多解释了&#xff0c;求解LCA的过程就是轻重链的跳转&#xff0c;跟树剖求任意两点间的距离一样的操作&#xff0c;只不过不用线段树去维护disdisdis了&#xff0c;那就直接上代码吧。 代码 #inc…

HDU - 1998 奇数阶魔方

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 给你一个奇数nnn&#xff0c;构造一个nnn阶幻方。 3≤n≤193\le n\le 193≤n≤19 思路&#xff1a; 模板题了&#xff0c;直接构造一个幻方即可。 首先在第一行中间放一个111&#xff0c;之后每次看一下(…

Azure 物联网开发者体验 7 月更新:边缘计算开发工具,ARM64 设备开发,VS Code 容器化开发工具...

欢迎来到 Azure 物联网开发者体验的 7 月更新&#xff01;在本次发布中&#xff0c;微软为物联网开发人员提供了许多新的功能和改进&#xff01;物联网边缘计算开发工具正式发布Azure IoT Edge 于 2017 年发布。随着近两年的对边缘计算开发工具的不断开发与改善&#xff0c;Azu…

Tarjan缩点

Tarjan缩点 或许更好的阅读体验 P3387 【模板】缩点 思路 既然时缩点的模板&#xff0c;那么缩点自然少不了了&#xff0c;缩点后我们的到新的有向无环图&#xff0c;然后再利用这个无环图去找一条最大权值的路径&#xff0c;路径和即为答案。 我们改如何选取起点来避免不…

.NET中的值类型与引用类型

.NET中的值类型与引用类型这是一个常见面试题&#xff0c;值类型(Value Type)和引用类型(Reference Type)有什么区别&#xff1f;他们性能方面有什么区别&#xff1f;TL;DR&#xff08;先看结论&#xff09;值类型引用类型创建位置栈托管堆赋值时复制值复制引用动态内存分配无需…

Canada Cup 2016 C. Hidden Word 字符串构造

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 给你一个长度为272727的字符串sss&#xff0c;其中262626个字母每种都至少出现一次&#xff0c;让你构造一个213213213的矩阵&#xff0c;使得每个字母都出现一次&#xff0c;并且存在一条路径&#xff0c;经…

E:Johnny and Grandmaster

Johnny and Grandmaster 或许更好的阅读体验 思路 这道题就是把一组数分成两个集合&#xff0c;使这两个集合的对p的次方的和的差的最小值&#xff0c;也就是求sum1−sum2sum1 - sum2sum1−sum2得最小值&#xff0c; 由于结果过大我们可能需要对结果取模。那么这题得关键在于…

跨语言调用Hangfire定时作业服务

背景Hangfire允许您以非常简单但可靠的方式执行后台定时任务的工作。内置对任务的可视化操作。非常方便。但令人遗憾的是普遍都是业务代码和hagnfire服务本身聚合在一个程序中运行&#xff0c;极大的限制了hangfire的扩展和跨语言调用。所以萌生了开发一个支持restful api调用的…

Codeforces Round #453 (Div. 1) D. Weighting a Tree 构造 + dfs树

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 给你一颗nnn个点的图&#xff0c;每个点都有一个点权cic_ici​&#xff0c;要求你给每个边赋一个权值kik_iki​&#xff0c;要求对于每个点与他相连的边的权值之和等于这个点的点权cic_ici​。 n≤1e5,n−1≤…

Codeforces Round #648 (Div. 2)(A, B, C, D)

Codeforces Round #648 (Div. 2) 或许更好的阅读体验 A:Matrix Game 思路 题意可以说是非常简单的&#xff0c;我们选定的格子的行列都不能存在1&#xff0c;可以发现我们可以放的格子一定是固定的&#xff0c;然后这题就变成了技术总共可以放多少个棋子了&#xff0c;所以…

可落地微服务on k8s的持续集成/部署方案

我们隔一流的软件生产工艺还有多远&#xff1f;在距离15000公里外&#xff0c;Amazon一年可以进行5000万次部署&#xff0c;在这一边某电商平台的研发部门里&#xff0c;让他们引以为傲的是他们正在进行“敏捷”开发模式&#xff0c;并对外号称他们是以每周为迭代来进行升级。时…

Codeforces Round #579 (Div. 3) F1. Complete the Projects (easy version) 排序 + 贪心

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 思路&#xff1a; 比较直观的想法就是对于bi≥0b_i\ge0bi​≥0的项目&#xff0c;我们将aia_iai​从小到大排序&#xff0c;让后依次加bib_ibi​&#xff0c;如果有取不到的&#xff0c;显然就无解。否则再看…

历久弥新 - 微软万亿市值背后的文化支撑(下)|DevOps案例研究

内容来源&#xff1a;DevOps案例深度研究-Microsoft文化支撑研究战队&#xff08;本文只展示部分PPT研究成果&#xff0c;更多细节请关注案例分享会&#xff0c;及本公众号。&#xff09;本案例内容贡献者&#xff1a;陈飞&#xff08;Topic Leader&#xff09;、陈雨卿、郭子奇…

Codeforces Round #579 (Div. 3) F2. Complete the Projects (hard version) dp + 贪心

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 思路&#xff1a; 排序方式跟easyeasyeasy版本的一样&#xff0c;但是hardhardhard版本是输出最多能选多少&#xff0c;所以我们对b<0b<0b<0的情况不能直接贪心的来选了&#xff0c;考虑用dpdpdp来…

D:Ehab the Xorcist

或许更好的阅读体验 Ehab the Xorcist 思路 刚看时确实是一脸懵&#xff0c;最怕的就是这种构造题了&#xff0c;然后细想好像能写啊。 判断不可行的条件&#xff0c;只有两种情况&#xff1a; 一、v<uv < uv<u是一定不可能的&#xff0c;一串数的异或值一定小于…

架构杂谈《九》

微服务与轻量级通信机制微服务架构是一种架构模式&#xff0c;它提倡将单一应用程序划分成一组小的服务&#xff0c;服务之间胡亮协调、互相配合&#xff0c;为用户提供最终价值。在微服务架构中&#xff0c;服务与服务之间通信时&#xff0c;通常是通过轻量级的通信机制&#…

Codeforces Round #585 (Div. 2) E. Marbles 状压dp + 逆序对

传送门 文章目录题意&#xff1a;思路&#xff1a;题意&#xff1a; 思路&#xff1a; 考虑数列最终的状态一定是相同颜色在一起&#xff0c;所以我们发现他的颜色是有顺序的&#xff01;显然可以用状压dpdpdp来枚举颜色的顺序&#xff0c;但是又有问题了&#xff0c;你怎么确…