牛客练习赛71 F 红蓝图(kruskal重构树)

红蓝图

给定两个参数x,tx, tx,t,删除边权大于ttt的红边,和边权小于ttt的蓝边,问对于所有的点yyy,既能通过红边走向xxx,又能通过蓝边走向xxx,的点有多少个。

考虑对红边按照边权升序建立一颗kruskalkruskalkruskal重构树,对蓝边按照边权降序建立一颗kruskalkruskalkruskal重构树,

在树一中我们向上跳,找到点权小于等于ttt的深度最浅的点uuu,同理在树二上我们向上跳,找到点权大于等于ttt的深度最浅的点vvv

最后我们只需要判断,这两个点所代表的子树集合交集的大小即是答案。

最后要注意,题目中没有说明这是一个连通图,一意味着,可能有好几颗树!!!

#include <bits/stdc++.h>using namespace std;const int N = 4e5 + 10;struct Res {int u, v, w, op;bool operator < (const Res &t) const {return w < t.w;}
}edge[N];int n, m, Q, x[N], y[N];int root[N], ls[N << 5], rs[N<< 5], sum[N << 5], num;void update(int &rt, int pre, int l, int r, int x, int v) {rt = ++num;ls[rt] = ls[pre], rs[rt] = rs[pre], sum[rt] = sum[pre] + v;if (l == r) {return ;}int mid = l + r >> 1;if (x <= mid) {update(ls[rt], ls[pre], l, mid, x, v);}else {update(rs[rt], rs[pre], mid + 1, r, x, v);}
}int query(int rt1, int rt2, int l, int r, int L, int R) {if (l >= L && r <= R) {return sum[rt2] - sum[rt1];}int ans = 0, mid = l + r >> 1;if (L <= mid) {ans += query(ls[rt1], ls[rt2], l, mid, L, R);}if (R > mid) {ans += query(rs[rt1], rs[rt2], mid + 1, r, L, R);}return ans;
}struct Kruskal {int head[N], to[N], nex[N], cnt = 1;int ff[N], value[N], fa[N][21], l[N], r[N], rk[N], tot, nn;void add(int x, int y) {to[cnt] = y;nex[cnt] = head[x];head[x] = cnt++;}int find(int rt) {return ff[rt] == rt ? rt : ff[rt] = find(ff[rt]);}void dfs(int rt, int f) {fa[rt][0] = f, l[rt] = ++tot, rk[tot] = rt;for (int i = 1; i <= 20; i++) {fa[rt][i] = fa[fa[rt][i - 1]][i - 1];}for (int i = head[rt]; i; i = nex[i]) {if (to[i] == f) {continue;}dfs(to[i], rt);}r[rt] = tot;}void kruskal(int rev) {if (rev) {reverse(edge + 1, edge + 1 + m);}for (int i = 1; i < N; i++) {ff[i] = i;}nn = n;for (int i = 1, cur = 1; i <= m && cur < n; i++) {if (edge[i].op != rev) {continue;}int u = find(edge[i].u), v = find(edge[i].v);if (u != v) {cur++, nn++;ff[u] = ff[v] = nn;value[nn] = edge[i].w;add(nn, u), add(nn, v);if (u <= n) {value[u] = edge[i].w;}if (v <= n) {value[v] = edge[i].w;}}}for (int i = 1; i < 2 * n; i++) {if (ff[i] == i) {dfs(i, 0);}}}
}a, b;int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%d %d %d", &n, &m, &Q);for (int i = 1, u, v, op; i <= m; i++) {scanf("%d %d %d", &u, &v, &op);u++, v++;edge[i] = {u, v, i, op};}sort(edge + 1, edge + 1 + m);a.kruskal(0);b.kruskal(1);for (int i = 1; i < 2 * n; i++) {x[i] = a.rk[i];y[i] = b.l[i];}for (int i = 1; i < 2 * n; i++) {root[i] = root[i - 1];if (x[i] <= n) {update(root[i], root[i - 1], 1, 2 * n, y[x[i]], 1);}}int x, t;while (Q--) {scanf("%d %d", &x, &t);int u = x + 1, v = x + 1;for (int i = 20; i >= 0; i--) {if (a.fa[u][i] && a.value[a.fa[u][i]] <= t) {u = a.fa[u][i];}}for (int i = 20; i >= 0; i--) {if (b.fa[v][i] && b.value[b.fa[v][i]] >= t) {v = b.fa[v][i];}}int l1 = a.l[u], r1 = a.r[u], l2 = b.l[v], r2 = b.r[v];printf("%d\n", query(root[l1 - 1], root[r1], 1, 2 * n, l2, r2));}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313836.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.NET 分布式自增Id组件(解决自动分配机器Id、时间回拨问题)

IdHelper是一个.NET&#xff08;支持.NET45或.NET Standard2&#xff09;生成分布式趋势自增Id组件&#xff0c;有两个版本&#xff1a;原始版为基于雪花Id&#xff08;不了解请自行百度&#xff09;方案&#xff0c;需要手动管理设置WorkerId&#xff1b;完美版在原始版的基础…

悲观锁与乐观锁

悲观锁 总是假设最坏的情况&#xff0c;每次取数据的时候都认为别人会来修改&#xff0c;所以每次取数据的时候都会上锁。其它线程想要取这份数据就必须拿到相应的锁&#xff08;共享资源每次只供一个线程使用&#xff0c;其它线程阻塞&#xff0c;用完之后转让给其他线程&…

1190 最小公倍数之和 V2

1190 最小公倍数之和 V2 ∑iablcm(i,b)∑iabibgcd⁡(i,b)b∑d∣b∑i⌈ad⌉bdi[gcd(i,bd)1]b∑d∣b∑k∣bdμ(k)k∑i⌈⌈ad⌉k⌉abkib∑T∣n∑i⌈aT⌉bTi∑k∣Tμ(k)kb∑T∣n(bT⌈aT⌉)(bT−⌈aT⌉1)2∑k∣Tμ(k)k设f(n)∑d∣nμ(d)d,f(1)1,f(p)1−p,f(pk)1−p,且为积性函数\sum…

有关 VS Code 的五大谣言,背后的真相到底是如何的?

2015 年 4 月 29 日&#xff0c;在微软 Build 2015 大会上&#xff0c;微软发布了 Visual Studio Code 第一个预览版本。随着 Visual Studio Code 有了越来越多的使用者&#xff0c;随之而来的各类谣言也层出不穷。让我们就来看看有哪些与 VS Code 相关的谣言&#xff0c;背后的…

Mysql数据库锁机制

一&#xff1a;概念介绍 MySQL数据库锁管理机制&#xff1a; SQL层实现的锁机制    Meta-data元数据锁&#xff1a;在table cache缓存里实现的&#xff0c;为DDL&#xff08;Data Definition Language&#xff09;提供隔离操作。一种特别的meta-data元数据类型&#xff0c;…

HDU 6340 Problem I. Delightful Formulas(伯努利数 + 积性函数反演)

Problem I. Delightful Formulas 大概就是照着题解抄了一遍吧&#xff0c;这道题太神仙了…… aiik,si∑j1iajcalc∑i1nsi[gcd⁡(i,n)1]∑d∣nμ(d)∑i1ndsida_i i ^ k, s_i \sum_{j 1} ^{i} a_j\\ calc\ \sum_{i 1} ^{n} s_i[\gcd(i, n) 1]\\ \sum_{d \mid n} \mu(d) \s…

干货|亲测有效的N倍学习效果笔记法

这里是Z哥的个人公众号每周五11&#xff1a;45 按时送达当然了&#xff0c;也会时不时加个餐&#xff5e;我的第「108」篇原创敬上大家好&#xff0c;我是Z哥。先祝大家中秋快乐。我猜你现在心情不错&#xff0c;毕竟小长假的第一天才开始&#xff0c;后面还有60个小时的假期&a…

Java偏向锁、轻量级锁、重量级锁

先Mark&#xff0c;后补充 参照&#xff1a; https://www.infoq.cn/article/java-se-16-synchronized http://www.cnblogs.com/paddix/p/5405678.html http://www.cnblogs.com/lzh-blogs/p/7477157.html

.NET Core 3.0 可卸载程序集原理简析

文章转载授权级别&#xff1a;A 预计阅读时间&#xff1a;8分钟 损失发量&#xff1a;不好统计因为最近在群里被问到如何理解 .NET Core 3.0 可卸载程序集&#xff0c;所以就写了这篇简单的分析。因为时间实在很少&#xff0c;这篇文章只简单的罗列了相关的代码&…

P4331 [BalticOI 2004]Sequence 数字序列(左偏树)

P4331 [BalticOI 2004]Sequence 数字序列 给定一个序列整数a1,a2,a3,…,an−1,ana_1, a_2, a_3, \dots, a_{n - 1}, a_na1​,a2​,a3​,…,an−1​,an​&#xff0c;要找一个整数序列bbb&#xff0c;满足b1<b2<b3<⋯<bn−1<bnb_1 < b_2 < b_3< \dots&…

.NetCore技术研究-ConfigurationManager在单元测试下的坑

最近在将原有代码迁移.NET Core, 代码的迁移基本很快&#xff0c;当然也遇到了不少坑&#xff0c;重构了不少&#xff0c;后续逐步总结分享给大家。今天总结分享一下ConfigurationManager遇到的一个问题。先说一下场景&#xff1a;迁移.NET Core后&#xff0c;已有的配置文件&a…

E 速度即转发(牛客挑战赛48)(树套树)

速度即转发 给定一个长度为nnn的数组aaa&#xff0c;里面元素为a1,a2,a3,…,an−1,ana_1, a_2, a_3, \dots, a_{n - 1}, a_na1​,a2​,a3​,…,an−1​,an​。 有两种操作&#xff1a; 修改apka_p kap​k。给定l,r,kl, r, kl,r,k&#xff0c;设S(x)∑ilrmax(ai−x,0)S(x) …

volatile实现原理

先Mark&#xff0c;后续完成 https://segmentfault.com/a/1190000017255405 http://ifeve.com/volatile/ http://cmsblogs.com/?hmsrtoutiao.io&p2092&utm_mediumtoutiao.io&utm_sourcetoutiao.io https://my.oschina.net/u/2288283/blog/656572 https://blog.…

分析一次double强转float的翻车原因

人逢喜事精神爽,总算熬到下班撩~~正准备和同事打个招呼回家,被同事拖住问了.?‍♂️: 你们组做的那块代码,把double类型数据成float有问题啊?.?‍♀️: 嗯?不对是正常啊,float精度是没有double高,但float能保存到小数点后好多位,对我们来说完全够用了!?‍♂️: 不是啊,这不…

L 苍天阻我寻你,此情坚贞如一(西南科技大学2021届新生赛)(线段树)

苍天阻我寻你&#xff0c;此情坚贞如一 给定两个长度为nnn的数组a,ba, ba,b&#xff0c;满足−103≤ai,bi≤103-10 ^ 3 \leq a_i, b_i \leq 10 ^ 3−103≤ai​,bi​≤103&#xff0c;每个数字xxx表示向前走xxx步&#xff0c;如果是负数则后退嘛&#xff0c;设小AAA执行aaa数组…

Java并发常用方法 sleep 和 wait

一&#xff1a;sleep 和 wait sleep()方法&#xff1a; 功能&#xff1a;让当前线程休眠指定时间&#xff0c;休眠时间的准确性依赖于系统时钟和CPU调度机制是Thread类的静态方法可在任何地方调用&#xff0c;需要处理InterruptedException当前线程调用sleep()方法&#xff0…

.NET Core 3.0之深入源码理解Host(二)

写在前面停了近一个月的技术博客&#xff0c;随着正式脱离996的魔窟&#xff0c;接下来也正式恢复了。本文从源码角度进一步讨论.NET Core 3.0 中关于Host扩展的一些技术点&#xff0c;主要内容是关于创建Long Run Program的创建与守护。关于Host&#xff0c;我们最容易想到的就…

Finding Hotels(牛客国庆集训派对Day7 )(2016ICPC青岛K)(K-D Tree)

Finding Hotels 给定二维平面上nnn个点&#xff0c;每个点描述为x,y,cx, y, cx,y,c&#xff0c;x,yx, yx,y为坐标&#xff0c;ccc为该点的价值&#xff0c; 有mmm个询问&#xff0c;每次询问给x,y,cx, y, cx,y,c&#xff0c;要求&#xff0c;点的价值小于等于ccc的条件下&…

Java多线程常用方法 wait 和 notify

一&#xff1a;从一道面试题说起 启动两个线程, 一个输出 1,3,5,7…99, 另一个输出 2,4,6,8…100 最后 STDOUT 中按序输出 1,2,3,4,5…100 要求用 Java 的 wait notify 机制来实现 解法&#xff1a; public class Test {private static Object lock new Object();private st…

dotNET Core实现分布式环境下的流水号唯一

业务背景在管理系统中&#xff0c;很多功能模块都会涉及到各种类型的编号&#xff0c;例如&#xff1a;流程编号、订单号、合同编号等等。编号各有各自的规则&#xff0c;但通常有一个流水号来确定编号的唯一性&#xff0c;保证流水号的唯一&#xff0c;在不同的环境中实现方式…