速度即转发
给定一个长度为nnn的数组aaa,里面元素为a1,a2,a3,…,an−1,ana_1, a_2, a_3, \dots, a_{n - 1}, a_na1,a2,a3,…,an−1,an。
有两种操作:
- 修改ap=ka_p = kap=k。
- 给定l,r,kl, r, kl,r,k,设S(x)=∑i=lrmax(ai−x,0)S(x) = \sum\limits_{i = l} ^{r} max(a_i - x, 0)S(x)=i=l∑rmax(ai−x,0),求x∈[0,105]x \in[0, 10 ^ 5]x∈[0,105]内满足S(x)≥kS(x) \geq kS(x)≥k的最大整数xxx。
保证任何时刻数组值域在[0,105][0, 10 ^ 5][0,105],对于查询操作0≤k≤1050 \leq k \leq 10 ^ 50≤k≤105。
有个简单的想法树状数组套主席树,对于操作一,直接修改即可O(log2n)O(\log ^ 2 n)O(log2n),对于操作二,二分答案O(log3n)O(\log ^ 3 n)O(log3n),
显然三个log\loglog的算法,复杂度有点大可能过不了,考虑在线段树上二分答案,
假设我们当前所在的区间是[l,r][l, r][l,r],显然左子树代表的值域范围是[l,mid][l, mid][l,mid],右子树所代表的是[mid+1,r][mid + 1, r][mid+1,r],
如果答案在右子树,则答案最少为mid+1mid + 1mid+1,这个时候只要判断是否有ls_sum−sz_ls×(mid+1)≥kls\_sum - sz\_ls \times (mid + 1) \geq kls_sum−sz_ls×(mid+1)≥k即可,
如果成立,则说明答案最少为mid+1mid + 1mid+1我们可以进入右子树搜索,否则我们进入右子树搜索,最后我们到达的叶节点即为最优的答案
我们在递归的时候,两个变量upper_sum,upper_szupper\_sum, upper\_szupper_sum,upper_sz,当我们进入左子树的时候,把右子树的sum,szsum, szsum,sz同时累加到这两个变量上去,
由于我们往左子树走了,说明答案小于mid+1mid + 1mid+1了,右子树记录的信息都是≥mid+1\geq mid + 1≥mid+1的
在下一步的judgejudgejudge中我们可以直接使用右子树的信息。
#include <bits/stdc++.h>using namespace std;const int N = 1e5 + 10, maxn = 100000;typedef long long ll;int a[N], n, m;int root[N], ls[N << 7], rs[N << 7], num;ll sum[N << 7], sz[N << 7];inline int lowbit(int x) {return x & (-x);
}void update(int &rt, int l, int r, int x, int v) {if (!rt) {rt = ++num;}sum[rt] += x * v, sz[rt] += v;if (l == r) {return ;}int mid = l + r >> 1;if (x <= mid) {update(ls[rt], l, mid, x, v);}else {update(rs[rt], mid + 1, r, x, v);}
}void modify(int rt, int x, int v) {while (rt <= n) {update(root[rt], 0, maxn, x, v);rt += lowbit(rt);}
}int A[110], B[110], cnt1, cnt2;int query(int l, int r, ll upper_sum, ll upper_sz, ll k) {if (l == r) {if (upper_sum - upper_sz * l >= k) {return l;}return -1;}int mid = l + r >> 1;ll cur_sum = 0, cur_sz = 0;for (int i = 1; i <= cnt1; i++) {cur_sum -= sum[rs[A[i]]], cur_sz -= sz[rs[A[i]]];}for (int i = 1; i <= cnt2; i++) {cur_sum += sum[rs[B[i]]], cur_sz += sz[rs[B[i]]];}if (cur_sum + upper_sum - 1ll * (mid + 1) * (upper_sz + cur_sz) >= k) {for (int i = 1; i <= cnt1; i++) {A[i] = rs[A[i]];}for (int i = 1; i <= cnt2; i++) {B[i] = rs[B[i]];}return query(mid + 1, r, upper_sum, upper_sz, k);}else {for (int i = 1; i <= cnt1; i++) {A[i] = ls[A[i]];}for (int i = 1; i <= cnt2; i++) {B[i] = ls[B[i]];}return query(l, mid, upper_sum + cur_sum, upper_sz + cur_sz, k);}
}int get_ans(int l, int r, ll k) {cnt1 = cnt2 = 0;for (int i = l - 1; i; i -= lowbit(i)) {A[++cnt1] = root[i];}for (int i = r; i; i -= lowbit(i)) {B[++cnt2] = root[i];}return query(0, maxn, 0, 0, k);
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);scanf("%d %d", &n, &m);for (int i = 1; i <= n; i++) {scanf("%d", &a[i]);modify(i, a[i], 1);}ll k;for (int i = 1, op, l, r, p; i <= m; i++) {scanf("%d", &op);if (op) {scanf("%d %lld", &p, &k);modify(p, a[p], -1);a[p] = k;modify(p, a[p], 1);}else {scanf("%d %d %lld", &l, &r, &k);printf("%d\n", get_ans(l, r, k));}}return 0;
}