.NET Core ORM 类库Petapoco中对分页Page添加Order By对查询的影响

640?wx_fmt=gif

640?wx_fmt=png

介绍

最近一直在使用Petapoco+Entity Framework Core结合开发一套系统。

使用EFCore进行Code First编码,使用

使用Petapoco进行数据库的常规操作。并且结合PetaPoco.SqlKata的使用,减少了编写SQL语句的工作量,对提升开发效率有很大的帮助。Petapoco对数据库的支持非常的全,包括常规的一下数据库:SQL Server,SQL Server CE,MS Access,SQLite,MySQL,MariaDB,PostgreSQL,Firebird DB和Oracle。当然SQL Server为默认的支持。PetaPoco.SqlKata支持的数据库也是非常全的,包括:SqlServer, MySql, Postgres, Firebird, SQLite, Oracle。

遇到的问题

在数据库操作过程中,发现每个Controller的Index页面加载的非常缓慢,加载完成大约需要5s的时间,在浏览器端等待的时间相对来说是非常长的一个时间。于出现的问题终于有时间进行解决一下了。

系统运行加载页面耗时情况

先来看一下未使用Order By加载页面的耗时情况,第一个图中涉及的表的主键为guid类型,第二个图中涉及的主键为ulong类型,对于不同的主键进行分页查询时也有较大影响。

640?wx_fmt=gif

640?wx_fmt=png640?wx_fmt=png

使用OrderBy的耗时情况

使用Order by加载页面的耗时情况

640?wx_fmt=png640?wx_fmt=png

解决方法测试耗时

码代码,未有时

对出现的问题,使用StopWatch进行监视运行时间的长短,使用了分页的两种方法,区别是否加Order By语句,组成成如下四种情况:

  • PageAsync Order by

  • PageAsync

  • Page Order by

  • Page

代码如下:

运行后台输出的日志信息,可以看到对于是否加Order By

对查询耗时的影响是非常大的,对是否使用异步方法对耗时也有部分的影响

640?wx_fmt=png

Benchmark测试

对于上述的四种情况再次使用Benchmark进行一次性能测试,对使用的数据表的实体类不在列出:

namespace PetaPocoPageBenchMark	
{	class Program	{	static void Main(string[] args)	{	var summary = BenchmarkRunner.Run<PetapocoPage>();	Console.WriteLine("Hello World!");	}	}	public class PetapocoPage	{	public static IDatabase Database =>	new Database(DatabaseConfiguration.Build()	.UsingConnectionString(	"server=192.168.88.3;port=3306;uid=root;pwd=biobase;database=BiobaseProductionQrCode;")	.UsingProvider<MariaDbDatabaseProvider>());	[Benchmark]	public void PageOrderBy()	{	Database.Page<ProductManufactureLineDetailDto>(1, 20, "order by CreateDate");	}	[Benchmark]	public void Page()	{	Database.Page<ProductManufactureLineDetailDto>(1, 20);	}	[Benchmark]	public void PageOrderByAsync()	{	Database.PageAsync<ProductManufactureLineDetailDto>(1, 20, "order by CreateDate");	}	[Benchmark]	public void PageAsync()	{	Database.PageAsync<ProductManufactureLineDetailDto>(1, 20);	}	}	
}

Benchmark测试结果

对性能测试结果可以看到,使用Order By对性能的影响确实是非常大。640?wx_fmt=png

赶快来分享关注吖

640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313250.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.Net Core 3.0 IdentityServer4 快速入门

一、简介IdentityServer4是用于ASP.NET Core的OpenID Connect和OAuth 2.0框架。将IdentityServer4部署到您的应用中具备如下特点&#xff1a;1&#xff09;、认证服务2&#xff09;、单点登陆3&#xff09;、API访问控制4&#xff09;、联合网关5&#xff09;、专注于定制6&…

.NET Core3.0创建Worker Services

.NET CORE 3.0新增了Worker Services的新项目模板&#xff0c;可以编写长时间运行的后台服务&#xff0c;并且能轻松的部署成windows服务或linux守护程序。如果安装的vs2019是中文版本&#xff0c;Worker Services变成了辅助角色服务。Worker Services 咱也不知道怎么翻译成了这…

OpenCV Mat数据类型像素操作

转自&#xff1a;http://blog.csdn.net/skeeee/article/details/13297457 OpenCV图像像素操作及效率分析 在计算机视觉应用中&#xff0c;对于图像内容的读取分析是第一步&#xff0c;所以学习高效的处理图像是很有用的。一个图像有可能包含数以万计的像素&#xff0c;从根本上…

Bumblebee微服务网关之Url重写

为了提高Url访问的统一和友好性&#xff0c;一般访问的Url和服务定义的Url有所不同;为了解决这一问题Bumblebee提供Url重写功能;通过Url重写功能可以在转发前进行一个重写后再转发到后台服务。引用插件Bumblebee中使用Url重写需要引用两个插件&#xff0c;分别是Bumblebee.Conf…

依赖注入:一个Mini版的依赖注入框架

前面的章节中&#xff0c;我们从纯理论的角度对依赖注入进行了深入论述&#xff0c;我们接下来会对.NET Core依赖注入框架进行单独介绍。为了让读者朋友能够更好地理解.NET Core依赖注入框架的设计与实现&#xff0c;我们按照类似的原理创建了一个简易版本的依赖注入框架&#…

.NET Core 3.0 新 JSON API - JsonSerializer

JsonSerializer 前面几节的内容可能稍微有点底层&#xff0c;我们大部分时候可能只需要对C#的类进行串行化或者将JSON数据反串行化成C#类&#xff0c;在.NET Core 3.0里面&#xff0c;我们可以使用JsonSerializer这个类来做这些事情。 例子 还是使用之前用到的json数据&#xf…

Caffe查看每一层学习出来的pattern

Filter visualization http://www.cnblogs.com/dupuleng/articles/4244877.html 这一节参考http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/filter_visualization.ipynb&#xff0c;主要介绍如何显示每一层的参数及输出&#xff0c;这一部分非常重要&am…

.NET Core 3.0 新 JSON API - Utf8JsonWriter

Utf8JsonWriter类 下面研究一下如何写入json文件。这里需要使用Utf8JsonWriter类。 直接看代码&#xff1a; 这个类需要传递的参数类型是Stream或者Buffer&#xff0c;也就是向Stream或Buffer里面写入数据。 那么就提供一个buffer&#xff1a; 下面单独写一个方法&#xff0c;来…

python查看CNN训练模型参数

参照&#xff1a;http://blog.csdn.net/u011762313/article/details/49851795 #!/usr/bin/env python# 引入“咖啡” import caffeimport numpy as np# 使输出的参数完全显示 # 若没有这一句&#xff0c;因为参数太多&#xff0c;中间会以省略号“……”的形式代替 np.set_prin…

Bumblebee微服务网关之consul服务发现

网关需要维护相关负载的服务器&#xff0c;手动添加相对来说是一件比较麻烦的工作&#xff1b;为了解决这一问题组件扩展了一个基于consul服务发现插件&#xff0c;通过配置这个插件和启用后网关会自动从consul服务中获取服务并添加到网关对应的路由负载规则中。引用插件Bumble…

Github带来的不止是开源,还有折叠的认知

几乎每个程序员都知道github&#xff0c;但是知道目前上面有多少repositories的估计没几个。Z哥今天去看了下&#xff0c;最新的数量显示是1.39亿个。▲截图来自于github.com而这个数字在2008年那会只是3.3万个。这个增长速度可谓真的是“爆炸式增长”。与此同时&#xff0c;大…

最优间隔分类器-SVM

http://blog.csdn.net/Andrewseu/article/details/46991541 本讲大纲&#xff1a; 1.最优间隔分类器(optimal margin classifier) 2.原始/对偶优化问题&#xff08;KKT&#xff09;&#xff08;primal/dual optimization problem&#xff09; 3.SVM对偶(SVM dual) 4.核方法(…

自动给 Asp.Net Core Api 增加 ApiVersionNeutral

自动给 Asp.Net Core Api 增加 ApiVersionNeutralIntro新增加一个 Controller 的时候&#xff0c;经常忘记在 Controller 上增加 ApiVersion &#xff0c;结果就导致前端使用指定的 ApiVersion 访问的时候就会失败&#xff0c;不支持的 Api 版本。错误信息如下&#xff1a;{ &q…

K-means与高斯混合模型

K-means http://blog.pluskid.org/?p17 Clustering 中文翻译作“聚类”&#xff0c;简单地说就是把相似的东西分到一组&#xff0c;同 Classification (分类)不同&#xff0c;对于一个 classifier &#xff0c;通常需要你告诉它“这个东西被分为某某类”这样一些例子&#xf…

轻量级ORM《sqlcommon》第一个版本发布了

一、sqlcommon的特色1. 轻量级&#xff0c;整个包只有123kb。2. 性能好&#xff0c;自测。。。3. API和功能简单、代码简短、可维护性好基本都能看懂。这个点我认为很重要&#xff0c;你不用为了实现一个需求而四处查资料&#xff0c;这意味着这个包你可以自行维护修改&#xf…

从基于直方图的Graph-Cut到Grab-Cut

http://blog.csdn.net/zouxy09/article/details/8534954 区别&#xff1a; &#xff08;1&#xff09;Graph Cut的目标和背景的模型是灰度直方图&#xff0c;Grab Cut取代为RGB三通道的混合高斯模型GMM&#xff1b; &#xff08;2&#xff09;Graph Cut的能量最小化&#xf…

1024程序员节活动继续:购书优惠劵,折后再折,赶紧来抢啊

1024程序员节当当网计算机图书每满100减50&#xff01;满200减100&#xff01;满300-150&#xff01;机械工业出版社华章公司联合当当网特意为【DotNET技术圈】用户申请了一批可与满减叠加使用的“满200减30”的图书优惠码&#xff0c;优惠码使用后相当于&#xff1a;400减230 …

Shape Context

http://blog.csdn.net/u012507022/article/details/52437149 形状上下文特征是一种很流行的形状描述子&#xff0c;多用于目标识别&#xff0c;它采用一种基于形状轮廓的特征描述方法,其在对数极坐标系下利用直方图描述形状特征能够很好地反映轮廓上采样点的分布情况。 形状上下…

使用Magicodes.SwaggerUI快速配置SwaggerUI以及设置API分组

Magicodes.SwaggerUI快速配置和集成SwaggerUI特点通过配置文件简单配置即可完成SwaggerUI的API格式JSON生成和集成支持API分组和隐藏支持自定义页面和验证Nuget包联系我们订阅号关注“麦扣聊技术”微信订阅号可以获得最新文章、教程、文档。QQ群编程交流群<85318032>产品…

机器学习四大降维方法

http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映射方法&#xff0c;将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y&#xff0c;其中x是原始数据点的表达&#xff0c;目前最多使用向量表达形式。…