实现Prim算法,需设置两个辅助一维数组lowcost和closevertex。
- 其中lowcost用来保存集合V-U中各顶点与集合U中各顶点构成的边中具有最小权值的边的权值;
- 数组closevertex用来保存依附于该边的在集合U中的顶点。
过程:
假设初始状态时,U={u0}(u0为出发的顶点),这时有lowcost[0]=0,它表示顶点u0已加入集合U中,数组lowcost的其他各分量的值是顶点u0到其余各顶点所构成的直接边的权值。
然后不断选取权值最小的边(ui,uk)(ui∈U,uk∈V-U),每选取一条边,就将lowcost(k)置为0,表示顶点uk已加入集合U中。
由于顶点uk从集合V-U进入集合U后,这两个集合的内容发生了变化,就需依据具体情况更新数组lowcost和closevertex中部分分量的内容。
最后closevertex中即为所建立的最小生成树。
当无向网采用二维数组存储的邻接矩阵存储时,Prim算法的C++实现算法如下:
void MGraph::Min_Tree_Prim(int u)
{for (int i = 0; i < vertexnum; i++)if (i != u){close_edge[i].adjvertex = u;close_edge[i].lowcost = arcs[u][i];}close_edge[u].lowcost = 0;int k;for (int i = 0; i < vertexnum - 1; i++){int w = MAXW;for (int j = 0; j < vertexnum; j++){if (close_edge[j].lowcost != 0 && close_edge[j].lowcost < w){w = close_edge[j].lowcost;k = j;}}close_edge[k].lowcost = 0;for (int j = 0;j<vertexnum;j++)if (arcs[k][j] < close_edge[j].lowcost){close_edge[j].adjvertex = k;close_edge[j].lowcost = arcs[k][j];}}for (int i = 0; i < vertexnum; i++)if (i != u)cout << i << "->" << close_edge[i].adjvertex << "," << arcs[i][close_edge[i].adjvertex] << endl;
}
完整代码如下:
#include <iostream>
#include <queue>
using namespace std;
typedef int VertexType;
typedef int EdgeType;
const int MaxVertexNum = 30;
const int MAXW = 1e8;class closEdge
{friend class MGraph;
private:int adjvertex;int lowcost;
};class MGraph
{
public:MGraph(){CreatGraph();};void Min_Tree_Prim(int u);void CreatGraph();void Visit(int v);void BFS(int v);void BFStraverse();void DFStraverse();bool Ispath_BFS(int i, int j);//判断结点i和结点j之间是否有路径bool Ispath_DFS(int i, int j);//判断结点i和结点j之间是否有路径void Init_vis();
private:void DFS(int i, int j, bool &flag);void dfs_graph(int i);VertexType vertexs[MaxVertexNum];EdgeType arcs[MaxVertexNum][MaxVertexNum];int vertexnum;int edgenum;closEdge close_edge[MaxVertexNum];bool vis[MaxVertexNum];
};void MGraph::Min_Tree_Prim(int u)
{for (int i = 0; i < vertexnum; i++)if (i != u){close_edge[i].adjvertex = u;close_edge[i].lowcost = arcs[u][i];}close_edge[u].lowcost = 0;int k;for (int i = 0; i < vertexnum - 1; i++){int w = MAXW;for (int j = 0; j < vertexnum; j++){if (close_edge[j].lowcost != 0 && close_edge[j].lowcost < w){w = close_edge[j].lowcost;k = j;}}close_edge[k].lowcost = 0;for (int j = 0;j<vertexnum;j++)if (arcs[k][j] < close_edge[j].lowcost){close_edge[j].adjvertex = k;close_edge[j].lowcost = arcs[k][j];}}for (int i = 0; i < vertexnum; i++)if (i != u)cout << i << "->" << close_edge[i].adjvertex << "," << arcs[i][close_edge[i].adjvertex] << endl;
}void MGraph::CreatGraph()
{Init_vis();cout << "请输入图的顶点个数和边的条数" << endl;cin >> vertexnum >> edgenum;cout << "请依次输入按序号0到n顶点的中存储的信息" << endl;for (int i = 0; i < vertexnum; i++) cin >> vertexs[i];for (int i = 0; i < vertexnum; i++)for (int j = 0; j < vertexnum; j++)arcs[i][j] = MAXW;cout << "请输入边的信息(该图以有向图的邻接矩阵存储方式存储)" << endl;for (int i = 0; i < edgenum; i++){int a1, a2, w;cout << "输入边<i,j>对应的顶点序号i,j,然后再输入该边的权值" << endl;cin >> a1 >> a2>>w;arcs[a1][a2] = w;arcs[a2][a1] = w;}
}void MGraph::Init_vis()
{for (int i = 0; i < MaxVertexNum; i++) vis[i] = false;
}void MGraph::Visit(int v)
{cout << vertexs[v] << " ";
}void MGraph::BFS(int v)
{queue<int >q;q.push(v);vis[v] = true;while (q.size()){int t = q.front();Visit(t);q.pop();for (int i = 0; i < vertexnum; i++){if (arcs[t][i] == 1 && vis[i] == false){vis[i] = true;q.push(i);}}}cout << endl;Init_vis();
}void MGraph::BFStraverse()
{queue<int >q;for (int i = 0; i < vertexnum; i++){if (vis[i] == false){vis[i] = true;q.push(i);while (q.size()){int t = q.front();Visit(t);q.pop();for (int j = 0; j < vertexnum; j++)if (arcs[t][j] == 1 && vis[j] == false){vis[j] = true;q.push(j);}}}}cout << endl;Init_vis();
}void MGraph::dfs_graph(int i)
{Visit(i);for (int j = 0; j < vertexnum; j++){if (arcs[i][j] == 1 && vis[j] == false){vis[j] = true;dfs_graph(j);}}
}void MGraph::DFStraverse()
{for (int i = 0; i < vertexnum; i++){if (vis[i] == false){vis[i] = true;dfs_graph(i);}}cout << endl;Init_vis();
}bool MGraph::Ispath_BFS(int i, int j)
{queue<int >q;vis[i] = true;q.push(i);while (q.size()){int t = q.front();q.pop();if (t == j){Init_vis();return true;}for (int k = 0; k < vertexnum; k++){if (arcs[t][k] == 1 && vis[k] == false){vis[k] = true;q.push(k);}}}Init_vis();return false;
}void MGraph::DFS(int i, int j, bool &flag)
{if (i == j){flag = true;return;}for (int k = 0; k < vertexnum; k++){if (arcs[i][k] == 1 && vis[k] == false){vis[k] = true;DFS(k, j, flag);vis[k] = false;}}
}bool MGraph::Ispath_DFS(int i, int j)
{bool flag = false;vis[i] = true;DFS(i, j, flag);Init_vis();if (flag) return true;else return false;
}int main()
{MGraph g;int v;cin >> v;g.BFS(v);g.BFStraverse();g.DFStraverse();int n;cin >> n;g.Min_Tree_Prim(n);return 0;
}
测试结果: