第5章 Python 数字图像处理(DIP) - 图像复原与重建9 - 空间滤波 - 均值滤波器 - 算术平均、几何平均、谐波平均、反谐波平均滤波器

标题

    • 只存在噪声的复原 - 空间滤波
      • 均值滤波器
        • 算术平均滤波器
        • 几何均值滤波器
        • 谐波平均滤波器
        • 反(逆)谐波平均滤波器

只存在噪声的复原 - 空间滤波

仅被加性噪声退化
g(x,y)=f(x,y)+η(x,y)(5.21)g(x, y) = f(x, y) + \eta(x, y) \tag{5.21}g(x,y)=f(x,y)+η(x,y)(5.21)

G(u,v)=F(u,v)+N(u,v)(5.22)G(u, v) = F(u, v) + N(u, v) \tag{5.22}G(u,v)=F(u,v)+N(u,v)(5.22)

噪声项通常是未知的,因此不能直接从退化图像中减去噪声项来得到复原的图像。

对于周期噪声,只是个例外而不是规律,我们可以用谱G(u,v)G(u, v)G(u,v)来估计N(u,v)N(u, v)N(u,v),从G(u,v)G(u, v)G(u,v)中减去N(u,v)N(u, v)N(u,v)能够得到原图像的一个估计。

均值滤波器

算术平均滤波器

算术平均滤波器是最简单的均值滤波器。
f^(x,y)=1mn∑(r,c)∈Sxyg(r,c)(5.23)\hat{f}(x, y) = \frac{1}{mn} \sum_{(r,c)\in S_{xy}} g(r,c) \tag{5.23}f^(x,y)=mn1(r,c)Sxyg(r,c)(5.23)

SxyS_{xy}Sxy表示中心为(x,y)(x, y)(x,y)、大小为m×nm\times{n}m×n的矩形子图像窗口(邻域)的一组坐标。算术平均滤波器在由SxyS_{xy}Sxy定义的区域中,计算被污染图像g(x,y)g(x, y)g(x,y)的平均值。复原的图像f^\hat{f}f^(x,y)(x, y)(x,y)处的值,是使用SxyS_{xy}Sxy定义的邻域中的像素算出的算术平均值。

均值滤波平滑图像中的局部变化,它会降低图像中的噪声,但会模糊图像

def arithmentic_mean(image, kernel):"""define arithmentic mean filter, math: $$\hat{f}(x, y) = \frac{1}{mn} \sum_{(r,c)\in S_{xy}} g(r,c)$$param image: input imageparam kerne: input kernel, actually use kernel shapereturn: image after arithmentic mean filter, """img_h = image.shape[0]img_w = image.shape[1]m, n = kernel.shape[:2]padding_h = int((m -1)/2)padding_w = int((n -1)/2)# 这样的填充方式,可以奇数核或者偶数核都能正确填充image_pad = np.pad(image, ((padding_h, m - 1 - padding_h), \(padding_w, n - 1 - padding_w)), mode="edge")image_mean = image.copy()for i in range(padding_h, img_h + padding_h):for j in range(padding_w, img_w + padding_w):temp = np.sum(image_pad[i-padding_h:i+padding_h+1, j-padding_w:j+padding_w+1])image_mean[i - padding_h][j - padding_w] = 1/(m * n) * tempreturn image_mean
# 算术平均滤波器
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0507(b)(ckt-board-gauss-var-400).tif', 0) #直接读为灰度图像mean_kernal = np.ones([3, 3])
mean_kernal = mean_kernal / mean_kernal.sizeimg_arithmentic = arithmentic_mean(img_ori, kernel=mean_kernal)img_cv2_mean = cv2.filter2D(img_ori, ddepth= -1, kernel=mean_kernal)plt.figure(figsize=(18, 6))
plt.subplot(131), plt.imshow(img_ori, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_arithmentic, 'gray'), plt.title('Self Mean'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_cv2_mean, 'gray'), plt.title('CV2 mean'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

几何均值滤波器

f^(x,y)=[∏(r,c)∈Sxyg(r,c)]1mn(5.24)\hat{f}(x, y) = \Bigg[\prod_{(r,c)\in S_{xy}} g(r,c) \Bigg]^{\frac{1}{mn}} \tag{5.24}f^(x,y)=[(r,c)Sxyg(r,c)]mn1(5.24)

几何均值滤波器实现的平滑可与算术平均滤波器的相比,但损失的图像细节更少

def geometric_mean(image, kernel):"""define geometric mean filter, math: $$\hat{f}(x, y) = \Bigg[\prod_{(r,c)\in S_{xy}} g(r,c) \Bigg]^{\frac{1}{mn}}$$param image:  input imageparam kerne:  input kernel, actually use kernel shapereturn: image after geometric mean filter, """img_h = image.shape[0]img_w = image.shape[1]m, n = kernel.shape[:2]order = 1 / (kernel.size)padding_h = int((m -1)/2)padding_w = int((n -1)/2)# 这样的填充方式,可以奇数核或者偶数核都能正确填充image_pad = np.pad(image.copy(), ((padding_h, m - 1 - padding_h), \(padding_w, n - 1 - padding_w)), mode="edge")image_mean = image.copy()# 这里要指定数据类型,但指定是uint64或者float64,但结果不正确,反而乘以1.0,也是float64,但却让结果正确for i in range(padding_h, img_h + padding_h):for j in range(padding_w, img_w + padding_w):prod = np.prod(image_pad[i-padding_h:i+padding_h+1, j-padding_w:j+padding_w+1]*1.0)image_mean[i - padding_h][j - padding_w] = np.power(prod, order)return image_mean
def geometric_mean(image, kernel):""":param image: input image:param kernel: input kernel:return: image after convolution"""img_h = image.shape[0]img_w = image.shape[1]kernel_h = kernel.shape[0]kernel_w = kernel.shape[1]# paddingpadding_h = int((kernel_h -1)/2)padding_w = int((kernel_w -1)/2)image_pad = np.pad(image.copy(), (padding_h, padding_w), mode="constant", constant_values=1)image_convol = image.copy()for i in range(padding_h, img_h + padding_h):for j in range(padding_w, img_w + padding_w):temp = np.prod(image_pad[i-padding_h:i+padding_h+1, j-padding_w:j+padding_w+1] * kernel)image_convol[i - padding_h][j - padding_w] = np.power(temp, 1/kernel.size)return image_convol
# 几何均值滤波器
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0507(b)(ckt-board-gauss-var-400).tif', 0) #直接读为灰度图像mean_kernal = np.ones([3, 3])
arithmetic_kernel = mean_kernal / mean_kernal.sizeimg_geometric = geometric_mean(img_ori, kernel=mean_kernal)img_arithmentic = arithmentic_mean(img_ori, kernel=arithmetic_kernel)plt.figure(figsize=(18, 6))
plt.subplot(131), plt.imshow(img_ori, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_geometric, 'gray'), plt.title('Geomentric Mean'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_arithmentic, 'gray'), plt.title('Arithmetic mean'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
# plt.show()

在这里插入图片描述

谐波平均滤波器

f^(x,y)=mn∑(r,c)∈Sxy1g(r,c)(5.25)\hat{f}(x, y) = \cfrac{mn}{\sum_{(r,c)\in S_{xy}} \cfrac{1}{g(r,c)}} \tag{5.25}f^(x,y)=(r,c)Sxyg(r,c)1mn(5.25)

可以处理盐粒噪声,又能处理类似于高斯噪声的其他噪声,但不能处理胡椒噪声

def harmonic_mean(image, kernel):"""define harmonic mean filter, math: $$\hat{f}(x, y) = \Bigg[\prod_{(r,c)\in S_{xy}} g(r,c) \Bigg]^{\frac{1}{mn}}$$param image:  input imageparam kerne:  input kernel, actually use kernel shapereturn: image after harmonic mean filter, """epsilon = 1e-8img_h = image.shape[0]img_w = image.shape[1]m, n = kernel.shape[:2]order = kernel.sizepadding_h = int((m -1)/2)padding_w = int((n -1)/2)# 这样的填充方式,可以奇数核或者偶数核都能正确填充image_pad = np.pad(image.copy(), ((padding_h, m - 1 - padding_h), \(padding_w, n - 1 - padding_w)), mode="edge")image_mean = image.copy()# 这里要指定数据类型,但指定是uint64或者float64,但结果不正确,反而乘以1.0,也是float64,但却让结果正确# 要加上epsilon,防止除0for i in range(padding_h, img_h + padding_h):for j in range(padding_w, img_w + padding_w):temp = np.sum(1 / (image_pad[i-padding_h:i+padding_h+1, j-padding_w:j+padding_w+1]*1.0 + epsilon))image_mean[i - padding_h][j - padding_w] = order / tempreturn image_mean
# 谐波滤波处理高斯噪声
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0507(b)(ckt-board-gauss-var-400).tif', 0) #直接读为灰度图像mean_kernal = np.ones([3, 3])
arithmetic_kernel = mean_kernal / mean_kernal.sizeimg_geometric = geometric_mean(img_ori, kernel=mean_kernal)img_harmonic_mean = harmonic_mean(img_ori, kernel=mean_kernal)plt.figure(figsize=(18, 6))
plt.subplot(131), plt.imshow(img_ori, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_geometric, 'gray'), plt.title('Geomentric Mean'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_harmonic_mean, 'gray'), plt.title('Harmonic mean'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

# 谐波滤波处理盐粒噪声
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0508(b)(circuit-board-salt-prob-pt1).tif', 0) #直接读为灰度图像mean_kernal = np.ones([3, 3])
arithmetic_kernel = mean_kernal / mean_kernal.sizeimg_geometric = geometric_mean(img_ori, kernel=mean_kernal)img_harmonic_mean = harmonic_mean(img_ori, kernel=mean_kernal)plt.figure(figsize=(18, 6))
plt.subplot(131), plt.imshow(img_ori, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_geometric, 'gray'), plt.title('Geomentric Mean'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_harmonic_mean, 'gray'), plt.title('Harmonic mean'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

# 谐波滤波处理胡椒噪声
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0508(a)(circuit-board-pepper-prob-pt1).tif', 0) #直接读为灰度图像mean_kernal = np.ones([3, 3])
arithmetic_kernel = mean_kernal / mean_kernal.sizeimg_geometric = geometric_mean(img_ori, kernel=mean_kernal)img_harmonic_mean = harmonic_mean(img_ori, kernel=mean_kernal)plt.figure(figsize=(18, 6))
plt.subplot(131), plt.imshow(img_ori, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_geometric, 'gray'), plt.title('Geomentric Mean'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_harmonic_mean, 'gray'), plt.title('Harmonic mean'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

反(逆)谐波平均滤波器

f^(x,y)=∑(r,c)∈Sxyg(r,c)Q+1∑(r,c)∈Sxyg(r,c)Q(5.26)\hat{f}(x, y) = \frac{\sum_{(r,c)\in S_{xy}} g(r,c)^{Q+1}}{\sum_{(r,c)\in S_{xy}} g(r,c)^Q} \tag{5.26}f^(x,y)=(r,c)Sxyg(r,c)Q(r,c)Sxyg(r,c)Q+1(5.26)

Q称为滤波器的阶数。这种滤波器适用于降低或消除椒盐噪声。Q值为正时,该滤波器消除胡椒噪声;Q值为负时,该滤波器消除盐粒噪声。然而,该滤波器不能同时消除这两种噪声。注意当Q=0Q=0Q=0时,简化为算术平均滤波器;当Q=−1Q=-1Q=1时,简化为谐波平均滤波器。

def inverse_harmonic_mean(image, kernel, Q=0):"""define inverse harmonic mean filter, math: $$\hat{f}(x, y) = \frac{\sum_{(r,c)\in S_{xy}} g(r,c)^{Q+1}}{\sum_{(r,c)\in S_{xy}} g(r,c)^Q}$$param image : input imageparam kernel: input kernel, actually use kernel shapeparam Q     : input order of the filter, default is 0, which equal to arithmentic mean filter, while is -1 is harmonic mean filterreturn: image after inverse harmonic mean filter, """epsilon = 1e-8img_h = image.shape[0]img_w = image.shape[1]m, n = kernel.shape[:2]padding_h = int((m -1)/2)padding_w = int((n -1)/2)# 这样的填充方式,可以奇数核或者偶数核都能正确填充image_pad = np.pad(image.copy(), ((padding_h, m - 1 - padding_h), \(padding_w, n - 1 - padding_w)), mode="edge")image_mean = image.copy()# 这里要指定数据类型,但指定是uint64或者float64,但结果不正确,反而乘以1.0,也是float64,但却让结果正确# 要加上epsilon,防止除0for i in range(padding_h, img_h + padding_h):for j in range(padding_w, img_w + padding_w):temp = image_pad[i-padding_h:i+padding_h+1, j-padding_w:j+padding_w+1] * 1.0 + epsilon# image_mean[i - padding_h][j - padding_w] = np.sum(temp**(Q+1)) / np.sum(temp**Q + epsilon)image_mean[i - padding_h][j - padding_w] = np.sum(np.power(temp, (Q+1))) / np.sum(np.power(temp, Q) + epsilon)return image_mean
# 反谐波滤波处理胡椒噪声
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0508(a)(circuit-board-pepper-prob-pt1).tif', 0) #直接读为灰度图像mean_kernel = np.ones([3, 3])
arithmetic_kernel = mean_kernel / mean_kernel.sizeimg_inverse_harmonic = inverse_harmonic_mean(img_ori, kernel=mean_kernel, Q=1.5)img_harmonic_mean = harmonic_mean(img_ori, kernel=mean_kernel)plt.figure(figsize=(18, 6))
plt.subplot(131), plt.imshow(img_ori, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_inverse_harmonic, 'gray'), plt.title('Inverse Harmonic Mean'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_harmonic_mean, 'gray'), plt.title('Harmonic mean'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

# 反谐波滤波处理椒盐噪声
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0510(a)(ckt-board-saltpep-prob.pt05).tif', 0) #直接读为灰度图像mean_kernel = np.ones([3, 3])
arithmetic_kernel = mean_kernel / mean_kernel.sizeimg_inverse_harmonic = inverse_harmonic_mean(img_ori, kernel=mean_kernel, Q=1.5)
img_arithmentic_mean = inverse_harmonic_mean(img_ori, kernel=mean_kernel, Q=0)
# img_arithmentic_mean = arithmentic_mean(img_ori, kernel=mean_kernel)plt.figure(figsize=(18, 6))
plt.subplot(131), plt.imshow(img_ori, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(img_inverse_harmonic, 'gray'), plt.title('Inverse Harmonic Mean'), plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(img_arithmentic_mean, 'gray'), plt.title('Arithmentic mean'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

下面是各种滤波器的对比与总结

# 算术平均滤波器和几何均值滤波器对比
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0507(a)(ckt-board-orig).tif', 0) #直接读为灰度图像
img_noise = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0507(b)(ckt-board-gauss-var-400).tif', 0) #直接读为灰度图像mean_kernel = np.ones([3, 3])
arithmetic_kernel = mean_kernel / mean_kernel.sizeimg_arithmentic = arithmentic_mean(img_noise, kernel=mean_kernel)
img_geometric   = geometric_mean(img_noise, kernel=mean_kernel)plt.figure(figsize=(12, 12))
plt.subplot(221), plt.imshow(img_ori, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(img_noise, 'gray'), plt.title('Noisy'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_arithmentic, 'gray'), plt.title('Arithmentic mean'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_geometric, 'gray'), plt.title('Geomentric mean'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

反谐波滤波器可以处理胡椒与盐粒噪声。在处理胡椒噪声的时候,Q值一般为正值;在处理盐粒噪声时,Q值一般为负值。错误的选择Q值,不仅不能得到好的滤波效果,反而带来灾难性的结果。

# 反谐波滤波器分别使用不同的Q值对胡椒与盐粒噪声的滤波器
img_pepper = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0508(a)(circuit-board-pepper-prob-pt1).tif', 0) 
img_salt = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0508(b)(circuit-board-salt-prob-pt1).tif', 0)mean_kernel = np.ones([3, 3])
arithmetic_kernel = mean_kernel / mean_kernel.sizeinverse_harmonic_15 = inverse_harmonic_mean(img_pepper, kernel=mean_kernel, Q=1.5)
inverse_harmonic_15_ = inverse_harmonic_mean(img_salt, kernel=mean_kernel, Q=-1.5)plt.figure(figsize=(12, 12))
plt.subplot(221), plt.imshow(img_pepper, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(img_salt, 'gray'), plt.title('Noisy'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(inverse_harmonic_15, 'gray'), plt.title('Pepper Noise Q = 1.5'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(inverse_harmonic_15_, 'gray'), plt.title('Salt Noise Q = -1.5'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

# 错误的使用Q值,反谐波滤波器得到的是严重的后果
img_pepper = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0508(a)(circuit-board-pepper-prob-pt1).tif', 0) 
img_salt = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0508(b)(circuit-board-salt-prob-pt1).tif', 0)mean_kernel = np.ones([3, 3])
arithmetic_kernel = mean_kernel / mean_kernel.sizeinverse_harmonic_15 = inverse_harmonic_mean(img_pepper, kernel=mean_kernel, Q=-1.5)
inverse_harmonic_15_ = inverse_harmonic_mean(img_salt, kernel=mean_kernel, Q=1.5)plt.figure(figsize=(12, 12))
plt.subplot(221), plt.imshow(img_pepper, 'gray'), plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(img_salt, 'gray'), plt.title('Noisy'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(inverse_harmonic_15, 'gray'), plt.title('Pepper Noise Q = -1.5'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(inverse_harmonic_15_, 'gray'), plt.title('Salt Noise Q = 1.5'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/260604.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第5章 Python 数字图像处理(DIP) - 图像复原与重建10 - 空间滤波 - 统计排序滤波器 - 中值、最大值、最小值、中点、修正阿尔法均值滤波器

标题统计排序滤波器中值、最大值、最小值、中点 滤波器修正阿尔法均值滤波器统计排序滤波器 中值、最大值、最小值、中点 滤波器 f^(x,y)median{g(r,c)}(5.27)\hat{f}(x, y) \text{median} \{g(r,c)\} \tag{5.27}f^​(x,y)median{g(r,c)}(5.27) f^(x,y))max{g(r,c)}(5.28)\ha…

如何设置坐标原点值_氨气检测仪电化学原理及报警值如何设置

氨气体检测仪检定规程:一般氨气体检测仪检定规程主要是针对技术参数设定的一些标准,具体包含有规程的名称和范围、仪器示值误差、充分性标准差、响应时间、稳定性、报警功能、流量控制器、检定项目表、检定操作有数值误差、重复性、响应时间、稳定性等。…

第5章 Python 数字图像处理(DIP) - 图像复原与重建11 - 空间滤波 - 自适应滤波器 - 自适应局部降噪、自适应中值滤波器

标题自适应滤波器自适应局部降噪滤波器自适应中值滤波器自适应滤波器 自适应局部降噪滤波器 均值是计算平均值的区域上的平均灰度,方差是该区域上的图像对比度 g(x,y)g(x, y)g(x,y)噪声图像在(x,y)(x, y)(x,y)处的值 ση2\sigma_{\eta}^2ση2​ 为噪声的方差&am…

关闭防火墙_从零开始学Linux运维|09.关闭防火墙和SElinux

firewalld是centos7默认的防火墙安全增强型 Linux(Security-Enhanced Linux)简称 SELinux初学者建议先关闭,等熟悉了之后再来使用前期联系中的好多错误都有可能是由于没有关闭或者正确配置上面两项造成的1.临时关闭centos7下的防火墙firewalld一行命令就能够关闭firewalld--&qu…

Discuz!NT - 在线显示列表 游客 bug 修复

引发bug的条件:当你修改了系统组里面的[游客]组 的名字后!! 你会发现首页上底部的在线显示列表里始终都是显示"游客"字样而非你改过得字样!如图 至此你需要运行一个t-sql脚本去修复这个bug!(但是…

基于空间方法的图神经网络模型_用于时空图建模的图神经网络模型 Graph WaveNet | 课程上新...

课程概要本课程来自集智学园图网络论文解读系列活动。是对论文《Graph WaveNet for Deep Spatial-Temporal Graph Modeling》的解读。时空图建模 (Spatial-temporal graph modeling)是分析系统中组成部分的空间维相关性和时间维趋势的重要手段。已有算法大多基于已知的固定的图…

dataframe类型数据的遍历_Python零基础入门到爬虫再到数据分析,这些你都是要学会的...

1.必须知道的两组Python基础术语A.变量和赋值Python可以直接定义变量名字并进行赋值的,例如我们写出a 4时,Python解释器干了两件事情:在内存中创建了一个值为4的整型数据在内存中创建了一个名为a的变量,并把它指向4用一张示意图表…

第5章 Python 数字图像处理(DIP) - 图像复原与重建12 - 空间滤波 - 使用频率域滤波降低周期噪声 - 陷波滤波、最优陷波滤波

标题使用频率域滤波降低周期噪声陷波滤波深入介绍最优陷波滤波本章陷波滤波器有部分得出的结果不佳,如果有更好的解决方案,请赐教,不胜感激。 使用频率域滤波降低周期噪声 陷波滤波深入介绍 零相移滤波器必须关于原点(频率矩形中心)对称&a…

Android之Menu动态改变文字

Menu创建: Override//这里遇到一个问题add的是MenuItem的idpublic boolean onCreateOptionsMenu(Menu menu) {// TODO Auto-generated method stubmenu.add(0,1023, 0, "一");menu.add(0,1022, 1, "开启线程");Log.e("onCreateOptionsMenu…

去掉xcode中警告的一些经验

1、编译时,编译警告忽略掉某些文件 只需在在文件的Compiler Flags 中加入 -w 参数,例如: 2、编译时,编译警告忽略掉某段代码 #pragma clang diagnostic push#pragma clang diagnostic ignored "-Wmultichar"char b df;…

富士施乐3065扫描教程_全面支持IT国产化 富士施乐70款机型获统信UOS兼容认证

最近,富士施乐(中国)有限公司宣布共70款机型获得国产操作系统统信UOS的兼容认证,其中包括新一代ApeosPort旗舰智能型数码多功能机、多功能一体机/打印机、生产型数字印刷系统。这是继获得中标麒麟、龙芯和兆芯兼容认证后&#xff…

第5章 Python 数字图像处理(DIP) - 图像复原与重建13 - 空间滤波 - 线性位置不变退化 - 退化函数估计、运动模糊函数

标题线性位置不变退化估计退化函数采用观察法估计退化函数采用试验法估计退化函数采用建模法估计退化函数运动模糊函数OpenCV Motion Blur在这一节中,得到的结果,有些不是很好,我需要再努力多找资料,重新完成学习,如果…

视觉感受排序算法

1. 快速排序 介绍: 快速排序是由东尼霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快&…

python如何自定义函数_python如何自定义函数_后端开发

c语言特点是什么_后端开发 c语言特点是:1、语言简洁、紧凑,使用方便、灵活;2、运算符丰富;3、数据结构丰富,具有现代化语言的各种数据结构;4、具有结构化的控制语句;5、语法限制不太严度格&…

第5章 Python 数字图像处理(DIP) - 图像复原与重建14 - 逆滤波

标题逆滤波逆滤波逆滤波 逆滤波 图像的退化函数已知或者由前面的方法获取退化函数,则可以直接逆滤波 F^(u,v)G(u,v)H(u,v)(5.78)\hat{F}(u,v) \frac{G(u,v)}{H(u,v)} \tag{5.78}F^(u,v)H(u,v)G(u,v)​(5.78) F^(u,v)F(u,v)N(u,v)H(u,v)(5.79)\hat{F}(u,v) F(u, …

表示自己从头开始的句子_微信拍一拍后缀幽默回复有趣的句子 拍了拍唯美内容文案...

阅读本文前,请您先点击上面的“蓝色字体”,再点击“关注”,这样您就可以继续免费收到文章了。每天都会有分享,都是免费订阅,请您放心关注。注图文来源网络,侵删 …

HoloLens开发手记 - Unity之Tracking loss

当HoloLens设备不能识别到自己在世界中的位置时,应用就会发生tracking loss。默认情况下,Unity会暂停Update更新循环并显示一张闪屏图片给用户。当设备重新能追踪到位置时,闪屏图片会消失,并且Update循环还会继续。 此外&#xff…

运维学python用不上_不会Python开发的运维终将被淘汰?

简介 Python 语言是一种面向对象、直译式计算机程序设计语言,由 Guido van Rossum 于 1989 年底发明。Python 语法简捷而清晰,具有丰富和强大的类库,具有可扩展性和可嵌入性,是现代比较流行的语言。最流行的语言 IEEE Spectrum 的…

第5章 Python 数字图像处理(DIP) - 图像复原与重建15 - 最小均方误差(维纳)滤波

标题最小均方误差(维纳)滤波最小均方误差(维纳)滤波 目标是求未污染图像fff的一个估计f^\hat{f}f^​,使它们之间的均方误差最小。 e2E{(f−f^)2}(5.80)e^2 E \big\{(f - \hat{f})^2 \big\} \tag{5.80}e2E{(f−f^​)2…

入网许可证_入网许可证怎么办理,申请流程

移动通信系统及终端投资项目核准的若干规定》的出台,打开了更多企业进入手机业的大门,然而一些企业在关心拿到手机牌照后,是不是就是意味了拿到入网许可证,就可以上市销售。某些厂商认为:"手机牌照实行核准制,意味…