第5章 Python 数字图像处理(DIP) - 图像复原与重建12 - 空间滤波 - 使用频率域滤波降低周期噪声 - 陷波滤波、最优陷波滤波

标题

    • 使用频率域滤波降低周期噪声
      • 陷波滤波深入介绍
      • 最优陷波滤波

本章陷波滤波器有部分得出的结果不佳,如果有更好的解决方案,请赐教,不胜感激。

使用频率域滤波降低周期噪声

陷波滤波深入介绍

零相移滤波器必须关于原点(频率矩形中心)对称,中以为(u0,v0)(u_0, v_0)(u0,v0)的陷波滤波器传递函数在(−u0,−v0)(-u_0, -v_0)(u0,v0)位置必须有一个对应的陷波。陷波带阻滤波器传递函数可用中心被平移到陷波滤波中心的高通滤波器函数的乘积来产生

HNR(u,v)=∏k=1QHk(u,v)H−k(u,v)(5.33)H_{NR}(u, v) = \prod_{k=1}^Q H_k(u, v) H_{-k}(u, v) \tag{5.33}HNR(u,v)=k=1QHk(u,v)Hk(u,v)(5.33)

每个滤波器的距离计算公式为
Dk(u,v)=[(u−M/2−uk)2+(v−N/2−vk)2]1/2(5.34)D_{k}(u, v) = \big[(u - M / 2 - u_{k})^2 + (v - N / 2 - v_{k})^2 \big]^{1/2} \tag{5.34}Dk(u,v)=[(uM/2uk)2+(vN/2vk)2]1/2(5.34)
D−k(u,v)=[(u−M/2+uk)2+(v−N/2+vk)2]1/2(5.35)D_{-k}(u, v) = \big[(u - M / 2 + u_{k})^2 + (v - N / 2 + v_{k})^2 \big]^{1/2} \tag{5.35}Dk(u,v)=[(uM/2+uk)2+(vN/2+vk)2]1/2(5.35)

3个nnn阶巴特沃斯带阻滤波器
HNR(u,v)=∏k=13[11+[D0k/Dk(u,v)]n][11+[D0k/D−k(u,v)]n](5.36)H_{NR}(u, v) = \prod_{k=1}^3\bigg[ \frac{1}{1 + [D_{0k}/D_{k}(u,v)]^n} \bigg] \bigg[ \frac{1}{1 + [D_{0k}/D_{-k}(u,v)]^n} \bigg] \tag{5.36}HNR(u,v)=k=13[1+[D0k/Dk(u,v)]n1][1+[D0k/Dk(u,v)]n1](5.36)

常数D0kD_{0k}D0k对每对陷波是相同的,但对不同的陷波对,它可以不同。

陷波带通滤波器传递函数可用陷波带阻滤波器得到
HNP(u,v)=1−HNR(u,v)(5.37)H_{NP}(u, v) = 1 - H_{NR}(u, v) \tag{5.37}HNP(u,v)=1HNR(u,v)(5.37)

def butterworth_notch_resistant_filter(img, uk, vk, radius=10, n=1):"""create butterworth notch resistant filter, equation 4.155param: img:    input, source imageparam: uk:     input, int, center of the heightparam: vk:     input, int, center of the widthparam: radius: input, int, the radius of circle of the band pass filter, default is 10param: w:      input, int, the width of the band of the filter, default is 5param: n:      input, int, order of the butter worth fuction, return a [0, 1] value butterworth band resistant filter"""   M, N = img.shape[1], img.shape[0]u = np.arange(M)v = np.arange(N)u, v = np.meshgrid(u, v)DK = np.sqrt((u - M//2 - uk)**2 + (v - N//2 - vk)**2)D_K = np.sqrt((u - M//2 + uk)**2 + (v - N//2 + vk)**2)D0 = radiuskernel = (1 / (1 + (D0 / (DK+1e-5))**n)) * (1 / (1 + (D0 / (D_K+1e-5))**n))return kernel
def idea_notch_resistant_filter(source, uk, vk, radius=5):"""create idea notch resistant filter param: source: input, source imageparam: uk:     input, int, center of the heightparam: vk:     input, int, center of the widthparam: radius: input, the radius of the lowest value, greater value, bigger blocker out range, if the radius is 0, then allvalue is 0return a [0, 1] value filter"""M, N = source.shape[1], source.shape[0]u = np.arange(M)v = np.arange(N)u, v = np.meshgrid(u, v)DK = np.sqrt((u - M//2 - uk)**2 + (v - N//2 - vk)**2)D_K = np.sqrt((u - M//2 + uk)**2 + (v - N//2 + vk)**2)D0 = radiusk_1 = DK.copy()k_2 = D_K.copy()k_1[DK > D0] = 1k_1[DK <= D0] = 0k_2[D_K > D0] = 1k_2[D_K <= D0] = 0kernel = k_1 * k_2return kernel
def gauss_notch_resistant_filter(source, uk, vk, radius=5):"""create gauss low pass filter param: source: input, source imageparam: uk:     input, int, center of the heightparam: vk:     input, int, center of the widthparam: radius: input, the radius of the lowest value, greater value, bigger blocker out range, if the radius is 0, then allvalue is 0return a [0, 1] value filter"""    M, N = source.shape[1], source.shape[0]u = np.arange(M)v = np.arange(N)u, v = np.meshgrid(u, v)DK = np.sqrt((u - M//2 - uk)**2 + (v - N//2 - vk)**2)D_K = np.sqrt((u - M//2 + uk)**2 + (v - N//2 + vk)**2)D0 = radiusk_1 = 1 - np.exp(- (DK**2)/(D0**2))   k_2 = 1 - np.exp(- (D_K**2)/(D0**2))   kernel = k_1 * k_2return kernel
def plot_3d(ax, x, y, z, cmap):ax.plot_surface(x, y, z, antialiased=True, shade=True, cmap=cmap)ax.view_init(20, -20), ax.grid(b=False), ax.set_xticks([]), ax.set_yticks([]), ax.set_zticks([])
# 理想、高斯、巴特沃斯陷波滤波器
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import cmimg_temp = np.zeros([256, 256])INRF = idea_notch_resistant_filter(img_temp, radius=20, uk=30, vk=80)
GNRF = gauss_notch_resistant_filter(img_temp, radius=20, uk=30, vk=80)
BNRF = butterworth_notch_resistant_filter(img_temp, radius=20, uk=30, vk=80, n=5)# 用来绘制3D图
M, N = img_temp.shape[1], img_temp.shape[0]
u = np.arange(M)
v = np.arange(N)
u, v = np.meshgrid(u, v)fig = plt.figure(figsize=(21, 7))
ax_1 = fig.add_subplot(1, 3, 1, projection='3d')
plot_3d(ax_1, u, v, INRF, cmap=cm.plasma)ax_1 = fig.add_subplot(1, 3, 2, projection='3d')
plot_3d(ax_1, u, v, GNRF, cmap=cm.PiYG)ax_1 = fig.add_subplot(1, 3, 3, projection='3d')
plot_3d(ax_1, u, v, BNRF, cmap=cm.PiYG)
plt.tight_layout()
plt.show()

在这里插入图片描述

def centralized_2d(arr):"""centralized 2d array $f(x, y) (-1)^{x + y}$, about 4.5 times faster than index, 160 times faster than loop,"""def get_1_minus1(img):"""get 1 when image index is even, -1 while index is odd, same shape as input image, need this array to multiply with input imageto get centralized image for DFTParameter: img: input, here we only need img shape to create the arrayreturn such a [[1, -1, 1], [-1, 1, -1]] array, example is 3x3"""dst = np.ones(img.shape)dst[1::2, ::2] = -1dst[::2, 1::2] = -1return dst#==================中心化=============================mask = get_1_minus1(arr)dst = arr * maskreturn dst
def pad_image(img, mode='constant'):"""pad image into PxQ shape, orginal is in the top left corner.param: img: input imageparam: mode: input, str, is numpy pad parameter, default is 'constant'. for more detail please refere to Numpy padreturn PxQ shape image padded with zeros or other values"""dst = np.pad(img, ((0, img.shape[0]), (0, img.shape[1])), mode=mode)return dst    
def add_sin_noise(img, scale=1, angle=0):"""add sin noise for imageparam: img: input image, 1 channel, dtype=uint8param: scale: sin scaler, smaller than 1, will enlarge, bigger than 1 will shrinkparam: angle: angle of the rotationreturn: output_img: output image is [0, 1] image which you could use as mask or any you want to"""height, width = img.shape[:2]  # original image shape# convert all the angleif int(angle / 90) % 2 == 0:rotate_angle = angle % 90else:rotate_angle = 90 - (angle % 90)rotate_radian = np.radians(rotate_angle)    # convert angle to radian# get new image height and widthnew_height = int(np.ceil(height * np.cos(rotate_radian) + width * np.sin(rotate_radian)))new_width = int(np.ceil(width * np.cos(rotate_radian) + height * np.sin(rotate_radian))) # if new height or new width less than orginal height or width, the output image will be not the same shape as input, here set it rightif new_height < height:new_height = heightif new_width < width:new_width = width# meshgridu = np.arange(new_width)v = np.arange(new_height)u, v = np.meshgrid(u, v)# get sin noise image, you could use scale to make some difference, better you could add some shift
#     noise = abs(np.sin(u * scale))noise = 1 - np.sin(u * scale)# here use opencv to get rotation, better write yourself rotation functionC1 = cv2.getRotationMatrix2D((new_width/2.0, new_height/2.0), angle, 1)new_img = cv2.warpAffine(noise, C1, (int(new_width), int(new_height)), borderValue=0)# ouput image should be the same shape as input, so caculate the offset the output image and the new image# I make new image bigger so that it will cover all output imageoffset_height = abs(new_height - height) // 2offset_width = abs(new_width - width) // 2img_dst = new_img[offset_height:offset_height + height, offset_width:offset_width+width]output_img = normalize(img_dst)return output_img 
def spectrum_fft(fft):"""return FFT spectrum"""return np.sqrt(np.power(fft.real, 2) + np.power(fft.imag, 2))
# 陷波滤波器处理周期噪声
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0507(a)(ckt-board-orig).tif', 0) #直接读为灰度图像# 正弦噪声
noise = add_sin_noise(img_ori, scale=0.35, angle=-20)
img = np.array(img_ori / 255, np.float32)
img_noise = img + noise
img_noise = np.uint8(normalize(img_noise)*255)# 频率域中的其他特性
# FFT
img_fft = np.fft.fft2(img_noise.astype(np.float32))
# 中心化
fshift = np.fft.fftshift(img_fft)            # 将变换的频率图像四角移动到中心
# 中心化后的频谱
spectrum_fshift = spectrum_fft(fshift)
spectrum_fshift_n = np.uint8(normalize(spectrum_fshift) * 255)# 对频谱做对数变换
spectrum_log = np.log(1 + spectrum_fshift)BNRF = butterworth_notch_resistant_filter(img_ori, radius=5, uk=25, vk=10, n=4)f1shift = fshift * (BNRF)
f2shift = np.fft.ifftshift(f1shift) #对新的进行逆变换
img_new = np.fft.ifft2(f2shift)
img_new = np.abs(img_new)plt.figure(figsize=(15, 15))
plt.subplot(221), plt.imshow(img_noise, 'gray'), plt.title('With Sine noise'), plt.xticks([]),plt.yticks([])
plt.subplot(222), plt.imshow(spectrum_log, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
# 在图像上加上箭头
plt.arrow(180, 180, 25, 30, width=5,length_includes_head=True, shape='full')
plt.arrow(285, 265, -25, -30, width=5,length_includes_head=True, shape='full')plt.subplot(223), plt.imshow(BNRF, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
# 在图像上加上箭头
plt.arrow(180, 180, 25, 30, width=5,length_includes_head=True, shape='full')
plt.arrow(285, 265, -25, -30, width=5,length_includes_head=True, shape='full')plt.subplot(224), plt.imshow(img_new, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])plt.tight_layout()
plt.show()

在这里插入图片描述

# 陷波滤波器提取周期噪声
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0507(a)(ckt-board-orig).tif', 0) #直接读为灰度图像# 正弦噪声
noise = add_sin_noise(img_ori, scale=0.35, angle=-20)
img = np.array(img_ori / 255, np.float32)
img_noise = img + noise
img_noise = np.uint8(normalize(img_noise)*255)# 频率域中的其他特性
# FFT
img_fft = np.fft.fft2(img_noise.astype(np.float32))
# 中心化
fshift = np.fft.fftshift(img_fft)            # 将变换的频率图像四角移动到中心
# 中心化后的频谱
spectrum_fshift = spectrum_fft(fshift)
spectrum_fshift_n = np.uint8(normalize(spectrum_fshift) * 255)# 对频谱做对数变换
spectrum_log = np.log(1 + spectrum_fshift)BNRF = 1 - butterworth_notch_resistant_filter(img_ori, radius=5, uk=25, vk=10, n=4)f1shift = fshift * (BNRF)
f2shift = np.fft.ifftshift(f1shift) #对新的进行逆变换
img_new = np.fft.ifft2(f2shift)
img_new = np.abs(img_new)plt.figure(figsize=(15, 15))
# plt.subplot(221), plt.imshow(img_noise, 'gray'), plt.title('With Sine noise'), plt.xticks([]),plt.yticks([])
# plt.subplot(222), plt.imshow(spectrum_log, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
# # 在图像上加上箭头
# plt.arrow(180, 180, 25, 30, width=5,length_includes_head=True, shape='full')
# plt.arrow(285, 265, -25, -30, width=5,length_includes_head=True, shape='full')# plt.subplot(223), plt.imshow(BNRF, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
# # 在图像上加上箭头
# plt.arrow(180, 180, 25, 30, width=5,length_includes_head=True, shape='full')
# plt.arrow(285, 265, -25, -30, width=5,length_includes_head=True, shape='full')plt.subplot(224), plt.imshow(img_new, 'gray'), plt.title('Sine pattern'), plt.xticks([]),plt.yticks([])plt.tight_layout()
plt.show()

在这里插入图片描述

def butterworth_band_resistant_filter(source, center, radius=10, w=5, n=1):"""create butterworth band resistant filter, equation 4.150param: source: input, source imageparam: center: input, the center of the filter, where is the lowest value, (0, 0) is top left corner, source.shape[:2] is center of the source imageparam: radius: input, int, the radius of circle of the band pass filter, default is 10param: w:      input, int, the width of the band of the filter, default is 5param: n:      input, int, order of the butter worth fuction, return a [0, 1] value butterworth band resistant filter"""    epsilon = 1e-8N, M = source.shape[:2]u = np.arange(M)v = np.arange(N)u, v = np.meshgrid(u, v)D = np.sqrt((u - center[1]//2)**2 + (v - center[0]//2)**2)C0 = radiustemp = (D * w) / ((D**2 - C0**2) + epsilon)kernel = 1 / (1 + temp ** (2*n)) return kerneldef butterworth_low_pass_filter(img, center, radius=5, n=1):"""create butterworth low pass filter param: source: input, source imageparam: center: input, the center of the filter, where is the lowest value, (0, 0) is top left corner, source.shape[:2] is center of the source imageparam: radius: input, the radius of the lowest value, greater value, bigger blocker out range, if the radius is 0, then allvalue is 0param: n: input, float, the order of the filter, if n is small, then the BLPF will be close to GLPF, and more smooth from lowfrequency to high freqency.if n is large, will close to ILPFreturn a [0, 1] value filter"""  epsilon = 1e-8M, N = img.shape[1], img.shape[0]u = np.arange(M)v = np.arange(N)u, v = np.meshgrid(u, v)D = np.sqrt((u - center[1]//2)**2 + (v - center[0]//2)**2)D0 = radiuskernel = (1 / (1 + (D / (D0 + epsilon))**(2*n)))return kernel
# 陷波滤波器处理周期噪声,用巴特沃斯低通滤波器得到的效果比目前的陷波滤波器效果还要好
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0516(a)(applo17_boulder_noisy).tif', 0)
M, N = img_ori.shape[:2]fp = pad_image(img_ori, mode='reflect')
fp_cen = centralized_2d(fp)
fft = np.fft.fft2(fp_cen)# 中心化后的频谱
spectrum_fshift = spectrum_fft(fft)
spectrum_log = np.log(1 + spectrum_fshift)# 滤波器
n = 15
r = 20
H = butterworth_low_pass_filter(fp, fp.shape, radius=100, n=4)
# BNRF_1 = butterworth_notch_resistant_filter(fp, radius=r, uk=355, vk=0, n=n)
# BNRF_2 = butterworth_notch_resistant_filter(fp, radius=r, uk=0, vk=355, n=n)
# BNRF_3 = butterworth_notch_resistant_filter(fp, radius=r, uk=250, vk=250, n=n)
# BNRF_4 = butterworth_notch_resistant_filter(fp, radius=r, uk=-250, vk=250, n=n)
# BNRF = BNRF_1 * BNRF_2 * BNRF_3 * BNRF_4  * H
BNRF = Hfft_filter = fft * BNRF# 滤波后的频谱
spectrum_filter = spectrum_fft(fft_filter)
spectrum_filter_log = np.log(1 + spectrum_filter)# 傅里叶反变换
ifft = np.fft.ifft2(fft_filter)# 去中心化反变换的图像,并取左上角的图像
img_new = centralized_2d(ifft.real)[:M, :N]
img_new = np.clip(img_new, 0, img_new.max())
img_new = np.uint8(normalize(img_new) * 255)plt.figure(figsize=(15, 12))
plt.subplot(221), plt.imshow(img_ori, 'gray'), plt.title('With noise'), plt.xticks([]),plt.yticks([])
plt.subplot(222), plt.imshow(spectrum_log, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
plt.subplot(223), plt.imshow(spectrum_filter_log, 'gray'), plt.title('Spectrum With Filter'), plt.xticks([]),plt.yticks([])
plt.subplot(224), plt.imshow(img_new, 'gray'), plt.title('IDFT'), plt.xticks([]),plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

# 陷波滤波器提取周期噪声
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0516(a)(applo17_boulder_noisy).tif', 0)
M, N = img_ori.shape[:2]fp = pad_image(img_ori, mode='constant')
fp_cen = centralized_2d(fp)
fft = np.fft.fft2(fp_cen)# 中心化后的频谱
spectrum_fshift = spectrum_fft(fft)
spectrum_log = np.log(1 + spectrum_fshift)# 滤波器
n = 15
r = 20
H = butterworth_low_pass_filter(fp, fp.shape, radius=100, n=3)
# BNRF_1 = butterworth_notch_resistant_filter(fp, radius=r, uk=355, vk=0, n=n)
# BNRF_2 = butterworth_notch_resistant_filter(fp, radius=r, uk=0, vk=355, n=n)
# BNRF_3 = butterworth_notch_resistant_filter(fp, radius=r, uk=250, vk=250, n=n)
# BNRF_4 = butterworth_notch_resistant_filter(fp, radius=r, uk=-250, vk=250, n=n)
# BNRF = BNRF_1 * BNRF_2 * BNRF_3 * BNRF_4 * H
BNRF = H
fft_filter = fft * (1 - BNRF)# 滤波后的频谱
spectrum_filter = spectrum_fft(fft_filter)
spectrum_filter_log = np.log(1 + spectrum_filter)# 傅里叶反变换
ifft = np.fft.ifft2(fft_filter)# 去中心化反变换的图像,并取左上角的图像
img_new = centralized_2d(ifft.real)[:M, :N]
img_new = np.clip(img_new, 0, img_new.max())
img_new = np.uint8(normalize(img_new) * 255)plt.figure(figsize=(15, 12))
# plt.subplot(221), plt.imshow(img_ori, 'gray'), plt.title('With Sine noise'), plt.xticks([]),plt.yticks([])
# plt.subplot(222), plt.imshow(spectrum_log, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
# plt.subplot(223), plt.imshow(spectrum_filter_log, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
plt.subplot(224), plt.imshow(img_new, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

def narrow_notch_filter(img, w=5, opening=10, vertical=True, horizontal=False):"""create narrow notch resistant filterparam: img:        input, source imageparam: w:          input, int, width of the resistant, value is 0, default is 5param: opening:    input, int, opening of the resistant, value is 1, default is 10param: vertical:   input, boolean, whether vertical or not, default is "True"param: horizontal: input, boolean, whether horizontal or not, default is "False"return a [0, 1] value butterworth band resistant filter"""       assert w > 0, "W must greater than 0"w_half = w//2opening_half = opening//2img_temp = np.ones(img.shape[:2])M, N = img_temp.shape[:]img_vertical = img_temp.copy()img_horizontal = img_temp.copy()if horizontal:img_horizontal[M//2 - w_half:M//2 + w - w_half, :] = 0img_horizontal[:, N//2 - opening_half:N//2 + opening - opening_half] = 1if vertical:img_vertical[:, N//2 - w_half:N//2 + w - w_half] = 0img_vertical[M//2 - opening_half:M//2 + opening - opening_half, :] = 1img_dst = img_horizontal * img_verticalreturn img_dst
# 陷波滤波器处理周期噪声,用巴特沃斯低通滤波器得到的效果比目前的陷波滤波器效果还要好
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0519(a)(florida_satellite_original).tif', 0)
M, N = img_ori.shape[:2]fp = pad_image(img_ori, mode='reflect')
fp_cen = centralized_2d(fp)
fft = np.fft.fft2(fp_cen)# 中心化后的频谱
spectrum_fshift = spectrum_fft(fft)
spectrum_log = np.log(1 + spectrum_fshift)# 滤波器
n = 15
r = 20
H = narrow_notch_filter(fp, w=10, opening=30, vertical=True, horizontal=False)
# BNRF_1 = butterworth_notch_resistant_filter(fp, radius=r, uk=355, vk=0, n=n)
# BNRF_2 = butterworth_notch_resistant_filter(fp, radius=r, uk=0, vk=355, n=n)
# BNRF_3 = butterworth_notch_resistant_filter(fp, radius=r, uk=250, vk=250, n=n)
# BNRF_4 = butterworth_notch_resistant_filter(fp, radius=r, uk=-250, vk=250, n=n)
# BNRF = BNRF_1 * BNRF_2 * BNRF_3 * BNRF_4  * H
BNRF = Hfft_filter = fft * BNRF# 滤波后的频谱
spectrum_filter = spectrum_fft(fft_filter)
spectrum_filter_log = np.log(1 + spectrum_filter)# 傅里叶反变换
ifft = np.fft.ifft2(fft_filter)# 去中心化反变换的图像,并取左上角的图像
img_new = centralized_2d(ifft.real)[:M, :N]
img_new = np.clip(img_new, 0, img_new.max())
img_new = np.uint8(normalize(img_new) * 255)plt.figure(figsize=(15, 16))
plt.subplot(221), plt.imshow(img_ori, 'gray'), plt.title('With noise'), plt.xticks([]),plt.yticks([])
plt.subplot(222), plt.imshow(spectrum_log, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
plt.subplot(223), plt.imshow(spectrum_filter_log, 'gray'), plt.title('Spectrum With Filter'), plt.xticks([]),plt.yticks([])
plt.subplot(224), plt.imshow(img_new, 'gray'), plt.title('IDFT'), plt.xticks([]),plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

# 陷波滤波器提取周期噪声,用巴特沃斯低通滤波器得到的效果比目前的陷波滤波器效果还要好
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH05/Fig0519(a)(florida_satellite_original).tif', 0)
M, N = img_ori.shape[:2]fp = pad_image(img_ori, mode='reflect')
fp_cen = centralized_2d(fp)
fft = np.fft.fft2(fp_cen)# 中心化后的频谱
spectrum_fshift = spectrum_fft(fft)
spectrum_log = np.log(1 + spectrum_fshift)# 滤波器
n = 15
r = 20
H = narrow_notch_filter(fp, w=10, opening=30, vertical=True, horizontal=False)
# BNRF_1 = butterworth_notch_resistant_filter(fp, radius=r, uk=355, vk=0, n=n)
# BNRF_2 = butterworth_notch_resistant_filter(fp, radius=r, uk=0, vk=355, n=n)
# BNRF_3 = butterworth_notch_resistant_filter(fp, radius=r, uk=250, vk=250, n=n)
# BNRF_4 = butterworth_notch_resistant_filter(fp, radius=r, uk=-250, vk=250, n=n)
# BNRF = BNRF_1 * BNRF_2 * BNRF_3 * BNRF_4  * H
BNRF = Hfft_filter = fft * (1 - BNRF)# 滤波后的频谱
spectrum_filter = spectrum_fft(fft_filter)
spectrum_filter_log = np.log(1 + spectrum_filter)# 傅里叶反变换
ifft = np.fft.ifft2(fft_filter)# 去中心化反变换的图像,并取左上角的图像
img_new = centralized_2d(ifft.real)[:M, :N]
img_new = np.clip(img_new, 0, img_new.max())
img_new = np.uint8(normalize(img_new) * 255)plt.figure(figsize=(15, 16))
# plt.subplot(221), plt.imshow(img_ori, 'gray'), plt.title('With noise'), plt.xticks([]),plt.yticks([])
# plt.subplot(222), plt.imshow(spectrum_log, 'gray'), plt.title('Spectrum'), plt.xticks([]),plt.yticks([])
# plt.subplot(223), plt.imshow(spectrum_filter_log, 'gray'), plt.title('Spectrum With Filter'), plt.xticks([]),plt.yticks([])
plt.subplot(224), plt.imshow(img_new, 'gray'), plt.title('IDFT'), plt.xticks([]),plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

# 使用陷波带阻滤波器滤波
img_florida = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH05/Fig0519(a)(florida_satellite_original).tif", -1)#--------------------------------
fft = np.fft.fft2(img_florida)
fft_shift = np.fft.fftshift(fft)
amp_img = np.abs(np.log(1 + np.abs(fft_shift)))#--------------------------------
BNF = narrow_notch_filter(img_florida, w=5, opening=20, vertical=True, horizontal=False)fft_NNF = np.fft.fft2(BNF*255)
fft_shift_NNF = np.fft.fftshift(fft_NNF)
amp_img_NNF = np.abs(np.log(1 + np.abs(fft_shift_NNF)))#--------------------------------
f1shift = fft_shift * (BNF)
f2shift = np.fft.ifftshift(f1shift) #对新的进行逆变换
img_new = np.fft.ifft2(f2shift)#出来的是复数,无法显示
img_new = np.abs(img_new)#调整大小范围便于显示
img_new = (img_new-np.amin(img_new))/(np.amax(img_new)-np.amin(img_new))fft_mask = amp_img * BNFplt.figure(figsize=(15, 16))
plt.subplot(221),plt.imshow(img_florida,'gray'),plt.title('Image with noise')
plt.subplot(222),plt.imshow(amp_img,'gray'),plt.title('FFT')
plt.subplot(223),plt.imshow(fft_mask,'gray'),plt.title('FFT with mask')
plt.subplot(224),plt.imshow(img_new,'gray'),plt.title('Denoising')
plt.tight_layout()
plt.show()

在这里插入图片描述

最优陷波滤波

这种滤波方法的过程如下:
首先分离干扰模式的各个主要贡献,然后从被污染图像中减去该模式的一个可变加权部分。

首先提取干模式的主频率分量,提取方法是在每个尖峰位置放一个陷波带通滤波器传递函数HNP(u,v)H_{NP}(u, v)HNP(u,v),则干扰噪声模式的傅里叶变换为:
N(u,v)=HNP(u,v)G(u,v)(5.38)N(u, v) = H_{NP}(u, v)G(u, v) \tag{5.38}N(u,v)=HNP(u,v)G(u,v)(5.38)

则有噪声模式:
η(x,y)=J−1{HNP(u,v)G(u,v)}(5.39)\eta(x, y) = \mathfrak{J}^-1 \{ H_{NP}(u, v)G(u, v) \} \tag{5.39}η(x,y)=J1{HNP(u,v)G(u,v)}(5.39)

如果我们知道了噪声模式,我们假设噪声是加性噪声,只可以用污染的噪声g(x,y)g(x, y)g(x,y)减去噪声模式η(x,y)\eta(x, y)η(x,y)可得到f^(x,y)\hat{f}(x, y)f^(x,y),但通常这只是一个近似值。
f^(x,y)=g(x,y)−w(x,y)η(x,y)(5.40)\hat{f}(x, y) = g(x, y) - w(x, y)\eta(x, y) \tag{5.40}f^(x,y)=g(x,y)w(x,y)η(x,y)(5.40)
w(x,y)w(x, y)w(x,y)是一个加权函数或调制函数,这个方法的目的就是选取w(x,y)w(x, y)w(x,y),以便以某种意义的方式来优化结果。一种方法是选择w(x,y)w(x, y)w(x,y),使f^(x,y)\hat{f}(x, y)f^(x,y)在每点(x,y)(x, y)(x,y)的规定邻域上的方差最小。

m×nm\times{n}m×n(奇数)的邻域SxyS_{xy}Sxyf^(x,y)\hat{f}(x, y)f^(x,y)的“局部”方差估计如下:
σ2(x,y)=1mn∑(r,c)∈Sxy[f^(r,c)−f^ˉ]2(5.41)\sigma^2(x, y) = \frac{1}{mn} \sum_{(r,c)\in S_{xy}} \Big[ \hat{f}(r, c) - \bar{\hat{f}} \Big]^2 \tag{5.41}σ2(x,y)=mn1(r,c)Sxy[f^(r,c)f^ˉ]2(5.41)

f^ˉ\bar{\hat{f}}f^ˉ是邻域f^\hat{f}f^的平均值,
f^ˉ=1mn∑(r,c)∈Sxyf^(r,c)(5.42)\bar{\hat{f}} = \frac{1}{mn} \sum_{(r,c)\in S_{xy}} \hat{f}(r, c) \tag{5.42}f^ˉ=mn1(r,c)Sxyf^(r,c)(5.42)

将式(5.40)代入(5.41),得
σ2(x,y)=1mn∑(r,c)∈Sxy{[g(r,c)−w(r,c)η(r,c)]−[g‾−wη‾]}2(5.43)\sigma^2(x, y) = \frac{1}{mn} \sum_{(r,c)\in S_{xy}} \Big\{\big[g(r, c) - w(r, c) \eta(r, c)\big] - \big[\overline{g} - \overline{w\eta} \big ] \Big\}^2\tag{5.43}σ2(x,y)=mn1(r,c)Sxy{[g(r,c)w(r,c)η(r,c)][gwη]}2(5.43)

g‾\overline{g}gwη‾\overline{w\eta}wη分别是gggwηw\etawη在邻域SxyS_{xy}Sxy的平均值

若假设wwwSxyS_{xy}Sxy内近似为常数,则可用该邻域中心的www值来代替w(r,c)w(r, c)w(r,c):

w(r,c)=w(x,y)(5.44)w(r, c) = w(x, y) \tag{5.44}w(r,c)=w(x,y)(5.44)

因为w(x,y)w(x, y)w(x,y)SxyS_{xy}Sxy中被假设为常数,因此在SxyS_{xy}Sxy中根据w‾=w(x,y)\overline{w} = w(x, y)w=w(x,y)

wη‾=w(x,y)η‾(5.45)\overline{w\eta} = w(x, y) \overline{\eta} \tag{5.45}wη=w(x,y)η(5.45)

η‾\overline{\eta}η是邻域SxyS_{xy}Sxy中的平均值,所以式(5.43)变为:

σ2(x,y)=1mn∑(r,c)∈Sxy{[g(r,c)−w(x,y)η(r,c)]−[g‾−w(x,y)η‾]}2(5.44)\sigma^2(x, y) = \frac{1}{mn} \sum_{(r,c)\in S_{xy}} \Big\{\big[g(r, c) - w(x, y) \eta(r, c)\big] - \big[\overline{g} - {w(x, y)}\overline{\eta} \big ] \Big\}^2\tag{5.44}σ2(x,y)=mn1(r,c)Sxy{[g(r,c)w(x,y)η(r,c)][gw(x,y)η]}2(5.44)

要使得σ2(x,y)\sigma^2(x, y)σ2(x,y)相对w(x,y)w(x, y)w(x,y)最小,我们可以对式(5.44)求关于w(x,y)w(x, y)w(x,y)的偏导数,并令为偏导数为0;

∂σ2(x,y)∂w(x,y)=0(5.47)\frac{\partial{\sigma^2(x, y)}}{\partial{w(x, y)}} = 0 \tag{5.47}w(x,y)σ2(x,y)=0(5.47)

求得w(x,y)w(x, y)w(x,y):
w(x,y)=gη‾−gˉηˉη2‾−ηˉ2(5.48)w(x, y) = \frac{\overline{g\eta} - \bar{g}\bar{\eta}}{\overline{\eta^2} - \bar{\eta}^2}\tag{5.48}w(x,y)=η2ηˉ2gηgˉηˉ(5.48)

把式(5.48)代入式(5.40)并在噪声图像ggg中的每个点执行这一过程,可得到完全复原的图像。

# 这里还没有实现,迟点再弄吧
img_mariner = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH05/Fig0520(a)(NASA_Mariner6_Mars).tif", 0)
M, N = img_mariner.shape[:2]fp = pad_image(img_mariner, mode='reflect')
fp_cen = centralized_2d(fp)
fft = np.fft.fft2(fp_cen)# 中心化后的频谱
spectrum_fshift = spectrum_fft(fft)
spectrum_log = np.log(1 + spectrum_fshift)# 未中心化的频谱
fft_fp = np.fft.fft2(fp)
spectrum_fp = spectrum_fft(fft_fp)
spectrum_fp_log = np.log(1 + spectrum_fp)# 滤波器
n = 15
r = 20
H = butterworth_band_resistant_filter(fp, fp.shape, radius=40, w=5, n=5)
# BNRF_1 = butterworth_notch_resistant_filter(fp, radius=r, uk=355, vk=0, n=n)
# BNRF_2 = butterworth_notch_resistant_filter(fp, radius=r, uk=0, vk=355, n=n)
# BNRF_3 = butterworth_notch_resistant_filter(fp, radius=r, uk=250, vk=250, n=n)
# BNRF_4 = butterworth_notch_resistant_filter(fp, radius=r, uk=-250, vk=250, n=n)
# BNRF = BNRF_1 * BNRF_2 * BNRF_3 * BNRF_4  * Hfft_filter = fft_fp * (1 - H)
ifft = np.fft.ifft2(fft_filter)
img_new = ifft.real[:M, :N]# # show = spectrum_fp_log * H
# fft_filter = fft * BNRF# # 滤波后的频谱
# spectrum_filter = spectrum_fft(fft_filter)
# spectrum_filter_log = np.log(1 + spectrum_filter)# # 傅里叶反变换
# ifft = np.fft.ifft2(fft_filter)# 去中心化反变换的图像,并取左上角的图像
# img_new = centralized_2d(ifft.real)[:M, :N]
# img_new = np.clip(img_new, 0, img_new.max())
# img_new = np.uint8(normalize(img_new) * 255)plt.figure(figsize=(15, 15))
plt.subplot(221), plt.imshow(img_mariner, 'gray'), plt.title('With noise'), plt.xticks([]),plt.yticks([])
plt.subplot(222), plt.imshow(spectrum_log, 'gray'), plt.title('Spectrum Centralied'), plt.xticks([]),plt.yticks([])
plt.subplot(223), plt.imshow(spectrum_fp_log, 'gray'), plt.title('Spectrum Not Centralized'), plt.xticks([]),plt.yticks([])
plt.subplot(224), plt.imshow(img_new, 'gray'), plt.title('IDFT'), plt.xticks([]),plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

# 巴特沃斯带阻陷波滤波器 BNRF
img_dst = img_mariner - img_new
plt.figure(figsize=(16, 16))
plt.subplot(221), plt.imshow(img_dst, 'gray'), plt.title('BNF_1')
# plt.subplot(222), plt.imshow(BNF_2, 'gray'), plt.title('BNF_2')
# plt.subplot(223), plt.imshow(BNF_3, 'gray'), plt.title('BNF_3')
# plt.subplot(224), plt.imshow(BNF_dst, 'gray'), plt.title('BNF_dst')
plt.tight_layout()
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/260586.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android之Menu动态改变文字

Menu创建&#xff1a; Override//这里遇到一个问题add的是MenuItem的idpublic boolean onCreateOptionsMenu(Menu menu) {// TODO Auto-generated method stubmenu.add(0,1023, 0, "一");menu.add(0,1022, 1, "开启线程");Log.e("onCreateOptionsMenu…

去掉xcode中警告的一些经验

1、编译时&#xff0c;编译警告忽略掉某些文件 只需在在文件的Compiler Flags 中加入 -w 参数&#xff0c;例如&#xff1a; 2、编译时&#xff0c;编译警告忽略掉某段代码 #pragma clang diagnostic push#pragma clang diagnostic ignored "-Wmultichar"char b df;…

富士施乐3065扫描教程_全面支持IT国产化 富士施乐70款机型获统信UOS兼容认证

最近&#xff0c;富士施乐&#xff08;中国&#xff09;有限公司宣布共70款机型获得国产操作系统统信UOS的兼容认证&#xff0c;其中包括新一代ApeosPort旗舰智能型数码多功能机、多功能一体机/打印机、生产型数字印刷系统。这是继获得中标麒麟、龙芯和兆芯兼容认证后&#xff…

第5章 Python 数字图像处理(DIP) - 图像复原与重建13 - 空间滤波 - 线性位置不变退化 - 退化函数估计、运动模糊函数

标题线性位置不变退化估计退化函数采用观察法估计退化函数采用试验法估计退化函数采用建模法估计退化函数运动模糊函数OpenCV Motion Blur在这一节中&#xff0c;得到的结果&#xff0c;有些不是很好&#xff0c;我需要再努力多找资料&#xff0c;重新完成学习&#xff0c;如果…

视觉感受排序算法

1. 快速排序 介绍&#xff1a; 快速排序是由东尼霍尔所发展的一种排序算法。在平均状况下&#xff0c;排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较&#xff0c;但这种状况并不常见。事实上&#xff0c;快速排序通常明显比其他Ο(n log n) 算法更快&…

python如何自定义函数_python如何自定义函数_后端开发

c语言特点是什么_后端开发 c语言特点是&#xff1a;1、语言简洁、紧凑&#xff0c;使用方便、灵活&#xff1b;2、运算符丰富&#xff1b;3、数据结构丰富&#xff0c;具有现代化语言的各种数据结构&#xff1b;4、具有结构化的控制语句&#xff1b;5、语法限制不太严度格&…

第5章 Python 数字图像处理(DIP) - 图像复原与重建14 - 逆滤波

标题逆滤波逆滤波逆滤波 逆滤波 图像的退化函数已知或者由前面的方法获取退化函数&#xff0c;则可以直接逆滤波 F^(u,v)G(u,v)H(u,v)(5.78)\hat{F}(u,v) \frac{G(u,v)}{H(u,v)} \tag{5.78}F^(u,v)H(u,v)G(u,v)​(5.78) F^(u,v)F(u,v)N(u,v)H(u,v)(5.79)\hat{F}(u,v) F(u, …

表示自己从头开始的句子_微信拍一拍后缀幽默回复有趣的句子 拍了拍唯美内容文案...

阅读本文前&#xff0c;请您先点击上面的“蓝色字体”&#xff0c;再点击“关注”&#xff0c;这样您就可以继续免费收到文章了。每天都会有分享&#xff0c;都是免费订阅&#xff0c;请您放心关注。注图文来源网络&#xff0c;侵删 …

HoloLens开发手记 - Unity之Tracking loss

当HoloLens设备不能识别到自己在世界中的位置时&#xff0c;应用就会发生tracking loss。默认情况下&#xff0c;Unity会暂停Update更新循环并显示一张闪屏图片给用户。当设备重新能追踪到位置时&#xff0c;闪屏图片会消失&#xff0c;并且Update循环还会继续。 此外&#xff…

运维学python用不上_不会Python开发的运维终将被淘汰?

简介 Python 语言是一种面向对象、直译式计算机程序设计语言&#xff0c;由 Guido van Rossum 于 1989 年底发明。Python 语法简捷而清晰&#xff0c;具有丰富和强大的类库&#xff0c;具有可扩展性和可嵌入性&#xff0c;是现代比较流行的语言。最流行的语言 IEEE Spectrum 的…

第5章 Python 数字图像处理(DIP) - 图像复原与重建15 - 最小均方误差(维纳)滤波

标题最小均方误差&#xff08;维纳&#xff09;滤波最小均方误差&#xff08;维纳&#xff09;滤波 目标是求未污染图像fff的一个估计f^\hat{f}f^​&#xff0c;使它们之间的均方误差最小。 e2E{(f−f^)2}(5.80)e^2 E \big\{(f - \hat{f})^2 \big\} \tag{5.80}e2E{(f−f^​)2…

入网许可证_入网许可证怎么办理,申请流程

移动通信系统及终端投资项目核准的若干规定》的出台&#xff0c;打开了更多企业进入手机业的大门&#xff0c;然而一些企业在关心拿到手机牌照后&#xff0c;是不是就是意味了拿到入网许可证&#xff0c;就可以上市销售。某些厂商认为:"手机牌照实行核准制&#xff0c;意味…

使用python matplotlib画图

本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/52577631 未经博主允许不得转载。 博主地址是&#xff1a;http://blog.csdn.net/freewebsys 1&#xff0c;关于 非常简单的画图类库。 简直就是matlab的命令了。 python设计都是非常简单的。 在使用pyt…

碧桂园博智林机器人总部大楼_碧桂园职院新规划曝光!将建机器人实训大楼、新宿舍、水幕电影等...

4月10日&#xff0c;广东碧桂园职业学院召开院务(扩大)会议&#xff0c;学院党政班子领导和相关负责人出席。会议集中观看了学院四期工程的规划区介绍&#xff0c;并就具体方案的可行性进行了研讨。在碧桂园集团董事局主席杨国强先生的带领下&#xff0c;碧桂园职院正紧随集团产…

第5章 Python 数字图像处理(DIP) - 图像复原与重建16 - 约束最小二乘方滤波、几何均值滤波

标题约束最小二乘方滤波几何均值滤波约束最小二乘方滤波 F^(u,v)[H∗(u,v)∣H(u,v)∣2γ∣P(u,v)∣2]G(u,v)(5.89)\hat{F}(u,v) \bigg[\frac{H^*(u,v)}{|H(u,v)|^2 \gamma |P(u,v)|^2} \bigg]G(u,v) \tag{5.89}F^(u,v)[∣H(u,v)∣2γ∣P(u,v)∣2H∗(u,v)​]G(u,v)(5.89) P(u,…

securecrt是什么工具_比较一下几款常用的SSH工具

WX众号&#xff1a;基因学苑Q群&#xff1a;32798724更多精彩内容等你发掘&#xff01;编者按工欲善其事&#xff0c;必先利其器。作为生物信息分析人员&#xff0c;每天都需要通过SSH工具远程登录服务器&#xff0c;那么使用一款高效的连接工具就很有必要。这次我们来点评一下…

华为手机如何调时间显示_华为手机照片如何出现时间地点天气,教你30秒,一学就会...

阅读本文前&#xff0c;请您先点击上面的“蓝色字体”&#xff0c;再点击“关注”&#xff0c;这样您就可以继续免费收到文章了。每天都会有分享&#xff0c;都是免费订阅&#xff0c;请您放心关注。 …

第5章 Python 数字图像处理(DIP) - 图像复原与重建17 - 由投影重建图像、雷登变换、投影、反投影、反投影重建

标题由投影重建图像投影和雷登变换 Johann Radon反投影滤波反投影重建由投影重建图像 本由投影重建图像&#xff0c;主要是雷登变换与雷登把变换的应用&#xff0c;所以也没有太多的研究&#xff0c;只为了保持完整性&#xff0c;而添加到这里。 # 自制旋转投影图像# 模拟一个…

day12-nginx

nginx 前台服务器并发大 安装nginx useradd –s /sbin/nologin nginx tar xf nginx-xxx.tar.gz yum install –y gcc pcre-devel openssl-devel ./configure --prefix/etc/nginx --usernginx --groupnginx --with-http_ssl_module --http-log-path/var/log/nginx/access.…

python args_Python可变参数*args和**kwargs用法实例小结

本文实例讲述了Python可变参数*args和**kwargs用法。分享给大家供大家参考&#xff0c;具体如下&#xff1a; 一句话简单概括&#xff1a;当函数的参数不确定的时候就需要用到*args和**kwargs&#xff0c;前者和后者的区别在于&#xff0c;后者引入了”可变”key的概念&#xf…