【theano-windows】学习笔记四——theano中的条件语句

前言

按照官网教程,学习条件语句Switchifelse的使用

参考地址: conditions

性能对比

ifElse是将布尔变量和两个变量当做输入

Switch是将张量和两个变量当做输入. 因为Switch是元素级操作,所以比ifElse更具一般性

Switch需要对所有输出变量进行评估,ifElse只需要计算条件中一个变量的结果

用法

需要实现的表达式

output={x,a<by,ab

  • 使用Switch语句

    
    #使用Switcha,b=T.dscalars('a','b')
    x,y=T.dmatrices('a','b')
    z_switch=T.switch(T.lt(a,b),T.mean(x),T.mean(y))
    f_switch=theano.function([a,b,x,y],z_switch,mode=theano.Mode(linker='vm'))
    val1=0.
    val2=1.
    big_mat1=numpy.ones((10000,1000))
    big_mat2=numpy.ones((10000,1000))
    n_times=10#记录执行时间tic=time.clock()
    for i in range(n_times):f_switch(val1,val2,big_mat1,big_mat2)
    print('time spent evaluating both values %f sec' % (time.clock() - tic))#time spent evaluating both values 0.232891 sec
    
  • 使用ifelse语句

    
    #使用ifElsefrom theano.ifelse import ifelse#一定要用引入的,不能用theano.ifelse, 会出问题
    a,b=T.dscalars('a','b')
    x,y=T.dmatrices('a','b')
    z_lazy = ifelse(T.lt(a, b), T.mean(x), T.mean(y))
    f_lazyifelse=theano.function([a,b,x,y],z_lazy,mode=theano.Mode(linker='vm'))
    val1=0.
    val2=1.
    big_mat1=numpy.ones((10000,1000))
    big_mat2=numpy.ones((10000,1000))
    n_times=10#记录执行时间tic=time.clock()
    for i in range(n_times):f_lazyifelse(val1,val2,big_mat1,big_mat2)
    print('time spent evaluating both values %f sec' % (time.clock() - tic))#time spent evaluating both values 0.122027 sec
    

    可以发现由于开头说的ifelse比较懒,只执行一条, 所以时间短

【PS】怎么感觉没C++switch那么强大, 还是两个选择, 以后见到其他用法再补充, 一步步学

这篇博客划划水, 就学学这两个条件语句的使用, 目前除了性能差别, 在功能上并未发现区别, 都是根据第一个表达式去决定选择第二个参数或是第三个参数, 如果有复杂的功能, 后面肯定会接触到, 暂时就这样.

然而比较好玩的是看到了两个函数T.mean(),T.lt(), 感觉theano.tensor应该有很多功能, 下一篇博客就摘取一些感觉比较重要的函数贴出来.

本篇博客code: 链接: https://pan.baidu.com/s/1o8Sd9VG 密码: 8t8f

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246642.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【theano-windows】学习笔记五——theano中张量部分函数

前言 至此感觉应该可以写出一个logistic回归程序了&#xff0c;但是为了达到对theano中张量的更灵活的使用, 还是先看一下thenao.tensor对变量都提供了哪些操作&#xff0c;最全的文档戳这里或者这里, 这里就稍微摘取一点自我感觉以后可能用得多的函数 基本张量函数 创建张量…

【theano-windows】学习笔记六——theano中的循环函数scan

前言 Scan是Theano中最基础的循环函数, 官方教程主要是通过大量的例子来说明用法. 不过在学习的时候我比较习惯先看看用途, 然后是参数说明, 最后再是研究实例. 国际惯例, 参考网址 官网关于Scan的11个例子 官网更全面的介绍 简介 用途 递归的一般形式, 可以被用于循环s…

多标签分类、多任务分类、多输出回归概念

前言 虽然不是搞分类的&#xff0c;但是还是看看多标签和多分类的区别。为了避免自己的错误理解, 当然是选择原谅他啊…….找正规文档看哇. 以下翻译分别来自scikit-learn.org和 维基 喂鸡百科 国际惯例&#xff0c;贴上来源: Multiclass and multilabel algorithms Multi-…

【theano-windows】学习笔记七——logistic回归

前言 前面只是学了最基本的theano操作&#xff0c;但是theano中还有很多其他的东西&#xff0c;比如图结构&#xff0c;自定义函数等&#xff0c;这些暂时没有用到就先不看了&#xff0c;后续学啥用啥&#xff0c;没必要一口气吃个胖子&#xff0c;免得消化不良还把前面吃的东…

【theano-windows】学习笔记八——预备知识

前言 按照上一个博客所说的&#xff0c;直接按照深度学习0.1文档进行学习&#xff0c;当然在此之前我们需要了解这一系列教程所需要的数据集&#xff0c;以及一些概念性的东西 国际惯例&#xff0c;参考博客网址&#xff1a; 深度学习0.1文档 深度学习0.1文档-中文翻译 基…

【theano-windows】学习笔记九——softmax手写数字分类

前言 上一篇博客折腾了数据集的预备知识, 接下来按照官方的Deep learning 0.1 documentation一步步走, 先折腾softmax, 关于softmax和logistic回归分类的联系, 我在之前写过一个小博客 国际惯例, 参考博客走一波: Classifying MNIST digits using Logistic Regression soft…

【theano-windows】学习笔记十——多层感知机手写数字分类

前言 上一篇学习了softmax, 然后更进一步就是学习一下基本的多层感知机(MLP)了. 其实多层感知机同时就是w*xb用某个激活函数激活一下, 得到的结果作为下一层神经元的输入x, 类似于 output⋯f3(f2(f1(x∗w1b2)∗w2b2)∗w3b3)⋯output=\cdots f^3(f^2(f^1(x*w^1+b^2)*w^2+b^2)*…

【theano-windows】学习笔记十一——theano中与神经网络相关函数

前言 经过softmax和MLP的学习, 我们发现thenao.tensor中除了之前的博客【theano-windows】学习笔记五——theano中张量部分函数提到的张量的定义和基本运算外, 还有一个方法称为nnet, 如果自己实现过前面两篇博客中的代码就会发现用到了theano.tensor.nnet.sigmoid和thenao.te…

【caffe-windows】全卷积网络特征图分析

前言 突然就想分析一下全卷积网络的转置卷积部分了, 就是这么猝不及防的想法, 而且这个网络对图片的输入大小无要求&#xff0c;这么神奇的网络是时候分析一波了&#xff0c;我个人的学习方法调试代码&#xff0c;然后对照论文看理论 本次分析主要针对每层的权重大小和特征图…

【theano-windows】学习笔记十二——卷积神经网络

前言 按照进度, 学习theano中的卷积操作 国际惯例, 来一波参考网址 Convolutional Neural Networks (LeNet) 卷积神经网络如何应用在彩色图像上&#xff1f; 卷积小知识 三大特性&#xff1a;局部感知(稀疏连接), 权值共享, 池化 上图很重要, 描述的是前一个隐层m-1具有四…

【theano-windows】学习笔记十三——去噪自编码器

前言 上一章节学习了卷积的写法,主要注意的是其实现在theano.tensor.nnet和theano.sandbox.cuda.dnn中都有对应函数实现, 这一节就进入到无监督或者称为半监督的网络构建中. 首先是自编码器(Autoencoders)和降噪自编码器(denoising Autoencoders) 国际惯例, 参考网址: Denoi…

梯度优化算法Adam

前言 最近读一个代码发现用了一个梯度更新方法, 刚开始还以为是什么奇奇怪怪的梯度下降法, 最后分析一下是用一阶梯度及其二次幂做的梯度更新。网上搜了一下, 果然就是称为Adam的梯度更新算法, 全称是:自适应矩估计(adaptive moment estimation) 国际惯例, 参考博文: 一文看…

读写bin

前言 工程中经常将参数文件存储为bin格式, 但是实际中为了分析其参数, 也不好用C去读取调试它, 所以可以用matlab或者python去读取它, 但是还是蛮坑的 Matlab中的读取和写入 写入文件 比较坑的是, 一定要注意自己的文件存储的类型, 比如数值是float还是double之类的, 不然很…

【theano-windows】学习笔记十四——堆叠去噪自编码器

前言 前面已经学习了softmax,多层感知器,CNN&#xff0c;AE&#xff0c;dAE&#xff0c;接下来可以仿照多层感知器的方法去堆叠自编码器 国际惯例&#xff0c;参考文献&#xff1a; Stacked Denoising Autoencoders (SdA) Greedy Layer-Wise Training of Deep Networks 理…

【theano-windows】学习笔记十五——受限玻尔兹曼机

前言 终于到了最喜欢的模型: 受限玻尔兹曼机(RBM)了, 发现关于RBM是如何从能量模型发展过来的介绍非常不错, 而关于详细理论证明, 可以去看我前面的受限玻尔兹曼机的一系列博客. 国际惯例, 参考博客,超级强推第二个博客, 证明过程很给力: Restricted Boltzmann Machines (R…

【Ogre-windows】环境配置

前言 由于工程原因, 学习一下Ogre面向对象图形渲染开源引擎, 慢慢爬坑吧。首先还是环境的配置问题哎. 其实最重要的是要预先编译三方库, 虽然官方说可以自动编译, 但是在自己电脑上还是出现了无法解析外部符号之类的问题, 正常情况下我就认为是三方库的lib出现了问题, 最后额外…

【theano-windows】学习笔记十六——深度信念网络DBN

前言 前面学习了受限玻尔兹曼机(RBM)的理论和搭建方法, 如果稍微了解过的人, 肯定知道利用RBM可以堆叠构成深度信念网络(deep belief network, DBN)和深度玻尔兹曼机(deep Boltzmann machine), 这里就先学习一下DBN. 国际惯例, 参考博文: Deep Belief Networks A fast lear…

【theano-windows】学习笔记十七——梯度中的consider_constant

前言 主要是在写玻尔兹曼机相关的theano时, 在计算梯度grad的时候发现一个参数名字叫做consider_constant,来看看这个到底做了什么事情 参考博客: using consider_constant selectively 【theano-windows】学习笔记三——theano中的导数 理论 其实就是数学中求导中用到的…

【Ogre-windows】实例配置

前言 折腾了好久才搞定教程实例, 主要是因为上一篇博客安装的具体版本是Ogre1.10.9, 而官方的Ogre Wiki Tutorial Framework没有指定具体版本, 如果单纯下载Ogre Wiki Tutorial Framework 1.10 - (Windows line endings, updated 2015-10-15) 运行, 基本会血崩. 所以, 在经过仔…

【Ogre-windows】旋转矩阵及位置解析

前言 这篇博客主要针对三种问题 如何创建动画帧如何获取全局位置如何计算全局旋转矩阵 仿真环境为VS2013Ogre1.10.9与matlab验证 创建动画帧 这里只做一个简单的实验: 将自带的人物模型Jaiqua的run运动给新创建的运动myrun中并播放&#xff0c;直接贴代码了 void JaiQua:…