智能优化算法应用:基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于金枪鱼群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.金枪鱼群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用金枪鱼群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.金枪鱼群算法

金枪鱼群算法原理请参考:https://blog.csdn.net/u011835903/article/details/123562840
金枪鱼群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

金枪鱼群算法参数如下:

%% 设定金枪鱼群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明金枪鱼群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241788.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1856_emacs_calc使用介绍与故事

Grey 全部学习内容汇总: GitHub - GreyZhang/g_org: my learning trip for org-mode 1856_emacs_calc使用介绍与故事 calc是emacs内置的一个计算器,可以提供多种计算表达方式并且可以支持org-mode中的表格功能。 主题由来介绍 我是因为想要了解org-…

采草(动态规划)

先说说我的思路吧 下面是部分聊天记录 赤坂 龍之介 2023/12/22 11:06:04 就像我之前说的那样,我把每一个药草的价值除以时间,得出了新的价值评估标准:采摘这个药草时,每分钟的价值 赤坂 龍之介 2023/12/22 11:07:00 然后排…

2023年小型计算机视觉总结

在过去的十年中,出现了许多涉及计算机视觉(CV)的项目,无论是小型的概念验证项目还是更大规模的生产应用。应用计算机视觉的方法是相当标准化的: 1、定义问题(分类、检测、跟踪、分割)、输入数据(图片的大小和类型、视野)和类别(正是我们想要的) 2、注释…

Python算法例27 对称数

1. 问题描述 对称数是一个旋转180后(倒过来)看起来与原数相同的数,找到所有长度为n的对称数。 2. 问题示例 给出n2,返回["11","69","88&#x…

详解Vue3中的基础路由和动态路由

本文主要介绍Vue3中的基础路由和动态路由。 目录 一、基础路由二、动态路由 Vue3中的路由使用的是Vue Router库,它是一个官方提供的用于实现应用程序导航的工具。Vue Router在Vue.js的核心库上提供了路由的功能,使得我们可以在单页应用中实现页面的切换、…

QT编写应用的界面自适应分辨率的解决方案

博主在工作机上完成QT软件开发(控件大小与字体大小比例正常),部署到客户机后,发现控件大小与字体大小比例失调,具体表现为控件装不下字体,即字体显示不全,推测是软件不能自适应分辨率导致的。 文…

C/C++ 共用体union的应用和struct不同

共用体union是一种数据格式,它能够存储不同的数据类型,但只能同时存储其中的一种类型。也就是说,结构体同时存储int、long和double,共用体只能春初int、long或double,共用体的语法与结构体相似,但含义不同。例如下面的声明&#x…

基于javaSpringbootmysql的小型超市商品展销系统01635-计算机毕业设计项目选题推荐(免费领源码)

摘 要 科技进步的飞速发展引起人们日常生活的巨大变化,电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流,人类发展的历史正进入一个新时代。在现实运用中,应用软件的工作…

【SpringCloud】-GateWay源码解析

GateWay系列 【SpringCloud】-GateWay网关 一、背景介绍 当一个请求来到 Spring Cloud Gateway 之后,会经过一系列的处理流程,其中涉及到路由的匹配、过滤器链的执行等步骤。今天我们来说说请求经过 Gateway 的主要执行流程和原理是什么吧 二、正文 …

【教3妹学编程-算法题】收集足够苹果的最小花园周长

3妹:“在小小的花园里面挖呀挖呀挖,种小小的种子开小小的花” 2哥 : 3妹也会唱这首儿歌呀, 这首儿歌在五一期间很火啊。 3妹:是呀, 小朋友们都喜欢唱,我这个200多个月的大朋友也喜欢唱,哈哈 2哥…

仅操作一台设备,如何实现本地访问另一个相同网段的私网?

正文共:1034 字 8 图,预估阅读时间:4 分钟 书接上文(地址重叠时,用户如何通过NAT访问对端IP网络?),我们已经通过两台设备的组合配置实现了通过IP地址进行访问。但一般场景中&#xf…

爬虫工作量由小到大的思维转变---<第二十三章 Scrapy开始很快,越来越慢(医病篇)>

诊断篇https://blog.csdn.net/m0_56758840/article/details/135170994?ops_request_misc%257B%2522request%255Fid%2522%253A%2522170333243316800180644102%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id1703332433168001806441…

C/C++ 连接访问 MySQL数据库

前面我们已经讲述了MySQL的基础使用,现在我们来看一下如何使用语言来操作数据库。在实际开发中,语言连接MySQL是为了能够在编程语言中与MySQL数据库进行交互和操作。大部分情况我们都是通过语言连接MySQL,建立与MySQL数据库的连接&#xff0c…

【SassVue】仿网易云播放器动画

简介 仿网易云播放动画 效果图&#xff08;效果图&#xff09; 最终成品效果 动画组件 src/components/musicPlay.vue <template><div class"music-play"><div></div><div></div><div></div></div> </te…

INFINI Gateway 如何防止大跨度查询

背景 业务每天生成一个日期后缀的索引&#xff0c;写入当日数据。 业务查询有时会查询好多天的数据&#xff0c;导致负载告警。 现在想对查询进行限制–只允许查询一天的数据&#xff08;不限定是哪天&#xff09;&#xff0c;如果想查询多天的数据就走申请。 技术分析 在每…

CogAgent:带 Agent 能力的视觉模型来了

之前我们分享过智谱AI新一代多模态大模型 CogVLM&#xff0c;该模型在不牺牲任何 NLP 任务性能的情况下&#xff0c;实现视觉语言特征的深度融合&#xff0c;其中 CogVLM-17B 在 14 个多模态数据集上取得最好或者第二名的成绩。 12月15日&#xff0c;基于 CogVLM&#xff0c;提…

AI 绘画StableDiffusionWebui图生图

介绍 stable-diffusion-webui AI绘画工具&#xff0c;本文介绍图生图&#xff0c;以一张图片做底图优化生成。 例如&#xff1a;上传一张真人照片&#xff0c;让AI把他改绘成动漫人物&#xff1b;上传画作线稿&#xff0c;让AI自动上色&#xff1b;上传一张黑白照&#xff0c…

并发踩坑:list共享变量的addAll

背景&#xff1a; 某业务报错了&#xff0c;提示&#xff1a;Caused by: org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: java.util.ConcurrentModificationException 分析&#xff1a; 这是执行查询时报的 并发修改异常。大概逻辑…

BigQuery Clustered Table 简介 - 聚簇表

Clustered Table的定义 聚簇可以提高某些类型的查询&#xff08;例如&#xff0c;使用过滤条件子句的查询和聚合数据的查询&#xff09;的性能。当通过查询作业或加载作业将数据写入聚簇表时&#xff0c;BigQuery 会使用聚簇列中的值对这些数据进行排序。这些值用于将数据整理…