Stable Diffusion 硬核生存指南:WebUI 中的 CodeFormer

本篇文章聊聊 Stable Diffusion WebUI 中的核心组件,强壮的人脸图像面部画面修复模型 CodeFormer 相关的事情。

写在前面

在 Stable Diffusion WebUI 项目中,源码 modules 目录中,有一个有趣的目录叫做 CodeFormer,它就是本文的主角啦。

GitHub 上的 CodeFormer 项目

CodeFormer 是一个很棒的开源项目sczhou/CodeFormer,被应用在许多项目中,它的论文(arxiv.org/abs/2206.11253)在 2022 年被 “经信息处理系统大会”(NeurIPS)接收后,自 2022 年 6 月代码开始放出至今的一年出头的时间里,Star 数量迅速升到了接近万星的水平,足见开源社区的认可程度。

CodeFormer 项目的关注度变化

从“点赞”者的地区分布来看,在国内的支持者占了项目近一半的人数。

CodeFormer 项目的支持者分布

在展开代码走读之前,先玩一下有助于对项目的理解。和往常一样,我将项目封装成了 Docker 容器,完整的项目,我上传到了 GitHub soulteary/docker-codeformer,自取的时候别忘记“一键三连”。

下面进入热身阶段。

CodeFormer 相关的前置知识

CodeFormer 是一个基于 Transformer 的预测网络,利用 code prediction 根据上下文来优化人脸图像,能够在画面非常模糊、甚至有损坏的情况下,修复出接近原始的、极高质量的图像画面。

项目核心的外部依赖有三个:

ultralytics/yolov5,是目前最受欢迎的目标检测开源项目,在 CodeFormer 中,作者使用了项目中的非常少的一部分代码实现,主要功能为 face_detector.py 人脸检测模块。相关代码位于项目 facelib/detection/yolov5face。

xinntao/facexlib,提供了当前开源人脸相关 STOA 的方法的工具库。项目使用了其中的 detectionparsingutils 三个模块,并进行了一些修改和调整。相关代码位于项目根目录的 facelib。

XPixelGroup/BasicSR,开源图像和视频恢复工具箱,能够提供超分辨率、去噪、去模糊等能力,项目包含了非常多的网络: EDSR、RCAN、SRResNet、SRGAN、ESRGAN、EDVR、BasicVSR、SwinIR、ECBSR 等等,并且支持 StyleGAN2、DFDNet。相关代码位于项目根目录的 basicsr。

项目使用的 BasicSR 项目并非原始项目团队发布的版本,而是经过修改的,目前未在发布页面提供的 1.3.2 版本。

相关细节在本文“代码解读部分”,感兴趣可以跳转浏览。

在 Stable Diffusion WebUI 中的使用

在 Stable Diffusion 图片生成过程中,它并不直接参与图片生成工作,而是在图片绘制完毕之后,在“后处理”阶段,进行面部细节恢复操作,这个后处理过程在 Stable Diffusion WebUI 的 process_images_inner 过程中。

因为本文主角是 CodeFormer,所以,我们就先不过多展开不相关的细节啦。有关于 WebUI 和 CodeFormer 相关需要注意的部分,在本文下面的章节中会聊。

准备工作

准备工作部分,我们还是只需要做两个工作:准备模型文件和模型运行环境。

关于模型运行环境,可以参考之前的文章《基于 Docker 的深度学习环境:入门篇》,如果你是 Windows 环境的用户,可以参考这篇《基于 Docker 的深度学习环境:Windows 篇》。

如果你不熟悉如何在 Docker 环境中使用 GPU,建议仔细阅读。考虑篇幅问题,本文就不赘述相关的话题啦。

只要你安装好 Docker 环境,配置好能够在 Docker 容器中调用显卡的基础环境,就可以进行下一步啦。

快速封装一个 CodeFormer Docker 容器应用

Docker CodeFormer 项目下载代码,并进入项目目录:

git clone https://github.com/soulteary/docker-codeformer.gitcd docker-codeformer

执行项目中的镜像构建工具:

scripts/build.sh

耐心等待镜像构建完毕:

# bash scripts/build.sh[+] Building 0.1s (13/13) FINISHED                                                                                                                                                                  => [internal] load build definition from Dockerfile                                                                                                                                           0.0s=> => transferring dockerfile: 449B                                                                                                                                                           0.0s=> [internal] load .dockerignore                                                                                                                                                              0.0s=> => transferring context: 2B                                                                                                                                                                0.0s=> [internal] load metadata for nvcr.io/nvidia/pytorch:23.04-py3                                                                                                                              0.0s=> [internal] load build context                                                                                                                                                              0.0s=> => transferring context: 387B                                                                                                                                                              0.0s=> [1/8] FROM nvcr.io/nvidia/pytorch:23.04-py3                                                                                                                                                0.0s=> CACHED [2/8] RUN pip install gradio==3.39.0 lpips==0.1.4                                                                                                                                   0.0s=> CACHED [3/8] WORKDIR /app                                                                                                                                                                  0.0s=> CACHED [4/8] RUN git clone https://github.com/sczhou/CodeFormer.git &&     cd CodeFormer &&     git checkout 8392d0334956108ab53d9439c4b9fc9c4af0d66d                                      0.0s=> CACHED [5/8] WORKDIR /app/CodeFormer/                                                                                                                                                      0.0s=> CACHED [6/8] COPY assets ./assets                                                                                                                                                          0.0s=> CACHED [7/8] COPY src/*.py ./                                                                                                                                                              0.0s=> CACHED [8/8] RUN python code-fix.py                                                                                                                                                        0.0s=> exporting to image                                                                                                                                                                         0.0s=> => exporting layers                                                                                                                                                                        0.0s=> => writing image sha256:58709f7b295be0a1c32c578e2897f5efa771ce75c19976718d812e7b55d7794d                                                                                                   0.0s=> => naming to docker.io/soulteary/docker-codeformer                               

因为项目锁定了 Python 3.8,所以我们暂时只能使用 nvidia/pytorch:23.04-py3 来作为基础镜像。

在完成基础镜像构建之后,可以从网盘下载 weights.zip (如果地址失效,请前往项目 issue 反馈)。模型应用运行需要的所有模型都在这里了,下载完毕后,解压缩模型压缩包,将 CodeFormerfacelibrealesrgan 三个目录放置到 weights 目录中,完整的项目结构这样的:

.
├── LICENSE
├── README.md
├── assets
│   └── image
├── docker
│   └── Dockerfile
├── scripts
│   └── build.sh
├── src
│   ├── app.py
│   └── code-fix.py
└── weights├── CodeFormer├── facelib└── realesrgan

准备好模型文件之后,使用下面的命令启动模型应用:

docker run --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --rm -it -v `pwd`/weights/:/app/CodeFormer/weights -p 7860:7860 soulteary/docker-codeformer

稍等片刻,我们将看到类似下面的日志:

Running on local URL:  http://0.0.0.0:7860To create a public link, set `share=True` in `launch()`.

接着,我们就可以打开浏览器访问 http://localhost:7860 或者 http://你的IP地址:7860 来试试看啦。

随便找一张质量不佳的原图测试

完整的代码和 Docker 封装逻辑,都在 soulteary/docker-codeformer 里,因为接下来要聊 CodeFormer 的逻辑,所以我们就不展开啦。

显卡资源使用

CodeFormer 不是我们之前使用的大模型,所以在显卡资源使用上轻量了不少,一般情况只需要 2G 左右的资源,处理过程中会稍微高一些,但也还在 2G 出头的水平:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.125.06   Driver Version: 525.125.06   CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  Off  | 00000000:01:00.0 Off |                  Off |
| 32%   40C    P2    64W / 450W |   2080MiB / 24564MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1429      G   /usr/lib/xorg/Xorg                167MiB |
|    0   N/A  N/A      1621      G   /usr/bin/gnome-shell               16MiB |
|    0   N/A  N/A      5090      C   python                           1892MiB |
+-----------------------------------------------------------------------------+

图片处理简单测试对比

我分别选择了三种不同风格,都包含人像,但是原始图片像素、模糊燥点都比较多的图片做了三个测试,能够看到效果还是非常惊艳的。

使用“爱老师”照片做个测试

使用“邓老师”照片做个测试

使用“华仔”照片做个测试

CodeFormer 代码执行逻辑

CodeFormer 代码执行逻辑非常简单:加载模型,使用模型处理图片,获得处理结果。

加载相关模型

在正式进行 CodeFormer 进行图片处理流程前,需要先调用模型创建三个模型实例。

项目使用 RealESRGAN 创建了一个“增强器”,精简并整理相关代码后,代码实现如下:

from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer# set enhancer with RealESRGAN
def set_realesrgan():model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)upsampler = RealESRGANer(model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",scale=2, model=model, tile=400, tile_pad=40, pre_pad=0,)return upsamplerupsampler = set_realesrgan()

使用 BasicSR 注册了一个名为 CodeFormer 的新网络实例,用于后续处理图片,大概代码实现如下:

import torch
from basicsr.utils.registry import ARCH_REGISTRYdef set_codeformer():codeformer_net = ARCH_REGISTRY.get("CodeFormer")(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=["32", "64", "128", "256"]).to("cuda")codeformer_net.load_state_dict(torch.load("CodeFormer/weights/CodeFormer/codeformer.pth")["params_ema"])codeformer_net.eval()return codeformer_netcodeformer_net = set_codeformer()

在推理过程中,有许多边边角角的功能需要处理,比如判断图片是否是灰度图片,对齐人脸的特征点等等操作,所以,还需要加载 retinaface_resnet50 模型:

def get_face_helper(upscale):face_helper = FaceRestoreHelper(det_model="retinaface_resnet50", upscale=upscale,face_size=512, crop_ratio=(1, 1), save_ext="png", use_parse=True, device="cuda")return face_helper

“工具人(模型)”准备齐了,就可以开始人脸图片的修复和增强处理了。

图片处理流程

第一步,使用模型读取图片,然后解析其中的人脸,并标记和进行人脸对齐:

face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = face_helper.get_face_landmarks_5(
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
)
print(f'\tdetect {num_det_faces} faces')
# align and warp each face
face_helper.align_warp_face()

第二步,依次处理上一步模型识别出的所有人脸:

for idx, cropped_face in enumerate(face_helper.cropped_faces):

对每一张人脸,使用上文中初始化好的 CodeFormer 网络来进行处理,并将处理后的图片进行暂存:

from torchvision.transforms.functional import normalize
from basicsr.utils import img2tensor, tensor2img# prepare data
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True
)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)try:with torch.no_grad():output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0]restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))del outputtorch.cuda.empty_cache()
except RuntimeError as error:print(f"Failed inference for CodeFormer: {error}")restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))restored_face = restored_face.astype("uint8")
face_helper.add_restored_face(restored_face)

考虑到显存资源有限,在处理过程中,程序还对处理后的临时内容进行了清理,也是很环保了:

del output
torch.cuda.empty_cache()

最后一步,判断是否有尚未人脸对齐的图片,如果有,使用 face_helper 将修复后的图片“复制粘贴”到原图中:

if not has_aligned:# upsample the backgroundif bg_upsampler is not None:# Now only support RealESRGAN for upsampling backgroundbg_img = bg_upsampler.enhance(img, outscale=upscale)[0]else:bg_img = Noneface_helper.get_inverse_affine(None)# paste each restored face to the input imageif face_upsample and face_upsampler is not None:restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img,draw_box=draw_box,face_upsampler=face_upsampler,)else:restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=draw_box)

上面的一切都搞定后,将图片进行保存就大功告成了。

Stable Diffusion WebUI 中的调用逻辑

在 WebUI 程序入口 webui.py 程序中,能够看到 CodeFormer 在程序初始化时进行了模型的加载:

def initialize():
...modules.sd_models.setup_model()startup_timer.record("setup SD model")codeformer.setup_model(cmd_opts.codeformer_models_path)startup_timer.record("setup codeformer")gfpgan.setup_model(cmd_opts.gfpgan_models_path)startup_timer.record("setup gfpgan")
...

除了默认的位于项目根目录下的 CodeFormer 的目录外,我们可以通过手动指定 --codeformer-models-path 参数,来改变程序加载模型的位置。

虽然程序在启动过程中,会调用modules/launch_utils.py#L271程序中的 prepare_environment 来准备组件代码:

def prepare_environment():codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)if not is_installed("lpips"):run_pip(f"install -r \"{os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}\"", "requirements for CodeFormer")

相关提交记录在十个月前,为保障程序可运行,并锁定了代码版本。所以如果我们想使用到最新的程序代码,还需要自己进行代码合并和更新。

在 modules/codeformer_model.py 程序中,作者重新实现了一个结构更清晰的 CodeFormer 处理流程,只有一百多行,去掉逻辑,只看架子的话:

import modules.face_restoration
import modules.shared
from modules import shared, errorscodeformer = Nonedef setup_model(dirname):class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration):def name(self):return "CodeFormer"def __init__(self, dirname):def create_models(self):return net, face_helperdef send_model_to(self, device):def restore(self, np_image, w=None):return restored_imgglobal codeformercodeformer = FaceRestorerCodeFormer(dirname)shared.face_restorers.append(codeformer)

结构非常清晰,包含了初始化模型网络,将模型发送到设备(比如 cpucudamps 等等),进行图片修复。

WebUI 中 CodeFormer 关键实现保存在 modules/codeformer,包含了两个程序 codeformer_arch.pyvqgan_arch.py,这两个文件来自 CodeFormer 项目,就不展开了。

实际调用 CodeFormer 的逻辑在 modules/postprocessing.py 和 scripts/postprocessing_codeformer.py。

后者是借助 modules/scripts_auto_postprocessing.py 程序中的 ScriptPostprocessingForMainUI 函数来调用的,也算是一种有趣的解耦方案了吧。

在 WebUI 中支持两种面部修复方案,CodeFormerGFP GAN,可以根据用户的喜好来选择:

def apply_face_restore(p, opt, x):opt = opt.lower()if opt == 'codeformer':is_active = Truep.face_restoration_model = 'CodeFormer'elif opt == 'gfpgan':is_active = Truep.face_restoration_model = 'GFPGAN'else:is_active = opt in ('true', 'yes', 'y', '1')p.restore_faces = is_active

Stable Diffusion WebUI 中 CodeFormer 的额外注意事项

简单来说,当 CodeFormer 模型加载失败的时候,WebUI 使用会有异常。但在 WebUI 初始化时,我们得不到任何错误提醒。

在 modules/codeformer_model.py 程序中,虽然代码处理流程清晰,但也写了一个坑:

import os
import modules.face_restoration
import modules.shared
from modules import errorsdef setup_model(dirname):os.makedirs(model_path, exist_ok=True)path = modules.paths.paths.get("CodeFormer", None)if path is None:returntry:...except Exception:errors.report("Error setting up CodeFormer", exc_info=True)

如果模型初始化失败,程序会直接 return,没有任何报错。但是实际使用的过程中,WebUI 是需要这个组件的,而这个组件初始化成功的前提,除了设备资源足够初始化网络模型之外,还需要能够成功下载模型文件。

为了避免网络问题,导致模型下载失败,我们可以将模型文件提前下载完毕,放置在 WebUI 模型读取路径中。

最后

这个项目在开源社区无疑是成功的项目之一,它能取得成功离不开许许多多的它基于的开源项目,从本文开头介绍前置知识和 CodeFormer 代码执行逻辑就不难看出来:每一个开源项目都站在了其他开源项目的肩上,然后让项目走的更远。

甚至,非代码之外的项目,也对这个项目的出现提供了非常多的助力,包括 Nvidia Lab 推出的开源的高质量人脸数据集:Flickr-Faces-HQ Dataset (FFHQ)。

本篇文章就先写到这里吧,下一篇文章再见。

–EOF


我们有一个小小的折腾群,里面聚集了一些喜欢折腾、彼此坦诚相待的小伙伴。

我们在里面会一起聊聊软硬件、HomeLab、编程上的一些问题,也会在群里不定期的分享一些技术资料。

喜欢折腾的小伙伴,欢迎阅读下面的内容,扫码添加好友。

关于“交友”的一些建议和看法

添加好友时,请备注实名和公司或学校、注明来源和目的,珍惜彼此的时间 😄

苏洋:关于折腾群入群的那些事


本文使用「署名 4.0 国际 (CC BY 4.0)」许可协议,欢迎转载、或重新修改使用,但需要注明来源。 署名 4.0 国际 (CC BY 4.0)

本文作者: 苏洋

创建时间: 2023年08月02日
统计字数: 13203字
阅读时间: 27分钟阅读
本文链接: https://soulteary.com/2023/08/02/stable-diffusion-hardcore-survival-guide-codeformer-in-webui.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/20274.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

归并排序——“数据结构与算法”

各位CSDN的uu们好呀,今天,小雅兰的内容仍然是数据结构与算法专栏的排序呀,下面,让我们进入归并排序的世界吧!!! 归并排序 归并排序(MERGE-SORT)是建立在归并操作上的一种…

初识C++:类与对象

前言(类的引入) C语言结构体中只能定义变量,在C中,结构体内不仅可以定义变量,也可以定义函数。比如: 之前在C语言中,用C语言方式实现的栈,结构体中只能定义变量;现在以C方…

Stable Diffusion - 真人照片的高清修复 (StableSR + GFPGAN) 最佳实践

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132032216 GFPGAN (Generative Facial Prior GAN) 算法,用于实现真实世界的盲脸恢复的算法,利用预训练的面部 GAN&#xf…

2023华数杯数学建模竞赛选题建议

提示&#xff1a;DS C君认为的难度&#xff1a;C<B<A&#xff0c;开放度&#xff1a;B<A<C 。 A题&#xff1a;隔热材料的结构优化控制研究 A题是数模类赛事很常见的物理类赛题&#xff0c;需要学习不少相关知识。 其中第一问需要建立平纹织物整体热导率与单根纤…

偶数科技亮相第十届中国中小企业投融资交易会

第十届中国中小企业投融资交易会暨2023“小企业 大梦想”高峰论坛近日在北京举办。本届大会以“金融活水精准滴灌 专精特新体制增量”为主题&#xff0c;通过展览展示、论坛活动、项目路演、产融对接等形式&#xff0c;搭建了专精特新企业与金融机构之间、与地方政府之间的产融…

华为云hcip核心知识笔记(存储服务规划)

云上存储 &#xff1a; 云硬盘:基于分布式架构&#xff0c;可弹性扩展的虚拟块存储服务 注意事项 挂载云硬盘实例和云硬盘必须在同一区域&#xff0c;否则挂载失败文件存储服务&#xff1a;完全托管的共享文件存储 可以为多个实例实现共享访问&#xff0c;不同vpc中可以进行对…

stm32 mpu6050 cubemx DMP法读取角度

文章目录 前言一、相关文件二、cubemx配置三、代码变量初始化主循环 总结 前言 文件 记录使用dmp库来读取mpu6050的角度。 这是参考文件 参考1–主要参考 github参考 参考2 参考三 一、相关文件 相关文件在这里下载&#xff08;未填&#xff0c;不过可以在上面的git中下载&a…

LPython:最新的高性能Python实现、速度极快且支持多后端

LPython 是最新的开源 Python 实现&#xff0c;目标是打造高性能版本的 Python。 LPython 官网写道&#xff0c;它一直作为 Python 编译器在开发&#xff0c;能够生成优化的机器代码。LPython 的后端支持 LLVM、C/C 翻译&#xff0c;甚至还支持 WebAssembly (WASM)。 LPython 主…

从0到1开发go-tcp框架【3-读写协程分离、引入消息队列、进入连接管理器、引入连接属性】【基础篇完结】

从0到1开发go-tcp框架【3-读写协程分离、引入消息队列、进入连接管理器、引入连接属性】 1 读写协程分离[v0.7] 添加一个Reader和Writer之间通信的channel添加一个Writer goroutineReader由之前直接发送给客户端改为发送给通信channel启动Reader和Writer一起工作 zinx/znet/co…

使用火山云搜索ESCloud服务构建图文检索应用(以文搜图/以图搜图)

图文检索在生活中具有广泛的应用&#xff0c;常见的图片检索包括基于文本内容搜索和基于图片内容搜索。用户通过输入文字描述或上传图片就可以在海量的图片库中快速找到同款或者相似图片&#xff0c;这种搜索方式被广泛应用于电商、广告、设计以及搜索引擎等热门领域。 本文基…

Vue3文本省略(Ellipsis)

APIs 参数说明类型默认值必传maxWidth文本最大宽度number | string‘100%’falseline最大行数numberundefinedfalsetrigger展开的触发方式‘click’undefinedfalsetooltip是否启用文本提示框booleantruefalsetooltipMaxWidth提示框内容最大宽度&#xff0c;单位px&#xff0c;…

APUE学习62章终端(二): stty命令特殊字符终端标志

1. stty命令 stty命令的英文解释: 很明显stty有一个-F参数 所以准确的说: stty命令是设置当前终端驱动程序(也有可能直接配置了硬件&#xff0c;这点目前不清楚)的属性&#xff0c;使当前终端的驱动程序能够使能/去使能一些特殊字符的识别与处理等等 2. stty命令的结构 3. 终端…

使用vuex让购物车联动

// 1.vuex点击加减触发函数提交仓库把我们请求的数据存到仓库 2.在仓库定义这个函数和对象 把我们存进去的数据存起来 // 3。在我们需要的页面拿出数据&#xff0c;然后循环就可以 // 4.当我们点击加号就触发函数然后在vuex对这个数据进行处理 // 5.对我们点进来的数据进行一个…

【SLAM】LoFTR知多少

1. LoFTR: Detector-Free Local Feature Matching with Transformers PAPER 论文 | LoFTR: Detector-Free Local Feature Matching with Transformers 代码 | CODE: 关键词 | detector-free, local feature matching LoFTR知多少 1. LoFTR: Detector-Free Local Feature M…

O3DE的Pass

Pass介绍 Pass是具有输入和输出的渲染过程。 在最终渲染帧中看到的每个细节都是通过一系列Pass&#xff08;前一个Pass的输出是下一个Pass的输入&#xff09;计算出来的。Pass可以生成图像&#xff08;作为纹理、缓冲区或渲染目标&#xff09;。每个图像都包含关于场景的特定…

Unity Shader:常用的C#与shader交互的方法

俗话说久病成医&#xff0c;虽然不是专业技术美术&#xff0c;但代码写久了自然会积累一些常用的shader交互方法。零零散散的&#xff0c;总结如下&#xff1a; 1&#xff0c;改变UGUI的材质球属性 有时候我们需要改变ui的一些属性&#xff0c;从而实现想要的效果。通常UGUI上…

Spring如何通过三级缓存解决循环依赖问题?

目录 一、什么是Spring 二、循环依赖问题 三、三级缓存机制 四、如何通过三级缓存解决循环依赖问题 一、什么是Spring Spring框架是一个开源的Java应用程序开发框架&#xff0c;提供了一种全面的、一致的编程模型&#xff0c;用于构建企业级应用程序和服务。它由Rod Johnso…

深度学习(32)——CycleGAN(1)

深度学习&#xff08;32&#xff09;——CycleGAN&#xff08;1&#xff09; 文章目录 深度学习&#xff08;32&#xff09;——CycleGAN&#xff08;1&#xff09;1. GAN原理2. CycleGAN&#xff08;1&#xff09;原理&#xff08;2&#xff09;核心思想&#xff08;3&#xf…

PtahDAO:全球首个DAO治理资产信托计划的金融平台

金融科技是当今世界最具创新力和影响力的领域之一&#xff0c;区块链技术作为金融科技的核心驱动力&#xff0c;正在颠覆传统的金融模式&#xff0c;为全球用户提供更加普惠、便捷、安全的金融服务。在这个变革的浪潮中&#xff0c;PtahDAO&#xff08;普塔道&#xff09;作为全…

【C++】开源:matplotlib-cpp静态图表库配置与使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍matplotlib-cpp图表库配置与使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&…