H - Exam
题意:就是给你一个数N,和一个方案数K,初始值为1,你有三种操作方式让值恰为N
1:自身加1; 2:加上X; 3:自身乘以7;
要你确定一X使得你的方案数恰好为K
思路:一开始根本没有去想dp,只是感觉是一个组合数之类得题,赛后与其他队交流了一下,说是dp。。。(dp真是🔪我千百遍啊。。)思路见注释
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl "\n"
const int N = 2e5 + 10;
const int INF = 1e18;
const int mod = 1e9 + 7;
int n, k, ads, m, t, x, ans, a[N], ad, jd, f[N];
string s;
void ClearFloat()
{ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
}
int read()
{int ret = 0, f = 1;char ch = getchar();while ('0' > ch || ch > '9'){if (ch == '-')f = -1;ch = getchar();}while ('0' <= ch && ch <= '9'){ret = ret * 10 + ch - '0';ch = getchar();}return ret * f;
}
/*
状态表示:f[i]表示和为i的所有集合
属性:方案数量
状态计算:f[i]+=f[i-1]f[i]+=f[i-x];(前提大于x)f[i]+=f[i/7];(前提为7的倍数)
*/
signed main()
{n = read(), m = read();for (int i = 2; i < n; i++){for (int j = 0; j <= n; j++)//每次枚举一个x都要初始化为0f[j] = 0;f[1] = 1; // 初始化f[1]为1,因为到达1的方式只有一种那就是初始状态for (int j = 1; j <= n; j++){f[j] += f[j - 1]; // 其通过1操作可以到达if (j > i)f[j] += f[j - i]; // 或者j大于x时,通过2操作到达,注意一定要大于,应为初始值为1if (j % 7 == 0) // 或者为7的倍数,通过操作3来到达此时的值,f[j] += f[j / 7];}if (f[n] == m) // 由于枚举顺序由小到达,故一定为最优解{printf("%lld\n", i);return 0;}}printf("0\n");
}
D - 38 parrots
题意:就是给你一个数n,接下来n个操作,+加入一个动物的长度,--减去最前面的一个动物操作,?询问当前有没有一个动物可以用其的倍数来表示全部的动物长度在,
思路:我们想这一定和区间最大公约数有关,但是如果不超时的维护他们呢,很明显我们维护区间最大公约数和区间最小值,因为我们知道,这个动物的长度一定是最小的,且一定是区间最大公约数,因此我们可以考虑用线段树来维护,且可以离线的操作,只需要动态根据加操作和减操作来更新查询的左右区间即可(我们甚至不用维护区间和,因为根本没有用
#include <bits/stdc++.h>
using namespace std;
#define pi acos(-1)
#define xx first
#define yy second
#define endl "\n"
#define lowbit(x) x & (-x)
#define int long long
#define ull unsigned long long
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
#define max(a, b) (((a) > (b)) ? (a) : (b))
// #define min(a, b) (((a) < (b)) ? (a) : (b))
#define Ysanqian ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
const int N = 6e5 + 10, M = 1010, inf = 0x3f3f3f3f, mod = 18446, P = 13331;
const double eps = 1e-8;
string s[N];
// map<int, int> mp;
int w[N], cnt, n;
struct Node
{int l, r;int sum, d;int minn;
} tr[N * 4];int gcd(int a, int b)
{return b ? gcd(b, a % b) : a;
}
void pushup(Node &u, Node &l, Node &r)
{u.sum = l.sum + r.sum;u.minn = min(l.minn, r.minn);u.d = gcd(l.d, r.d);
}
void pushup(int u)
{pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
void build(int u, int l, int r)
{if (l == r){int b = w[r];tr[u] = {l, r, b, b, b};}else{tr[u].l = l, tr[u].r = r;int mid = l + r >> 1;build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);pushup(u);}
}
Node query(int u, int l, int r)
{if (tr[u].l >= l && tr[u].r <= r)return tr[u];else{int mid = tr[u].l + tr[u].r >> 1;if (r <= mid)return query(u << 1, l, r);else if (l > mid)return query(u << 1 | 1, l, r);else{auto left = query(u << 1, l, r);auto right = query(u << 1 | 1, l, r);Node res;pushup(res, left, right);return res;}}
}
void solve()
{cin >> n;for (int i = 1; i <= n; i++){cin >> s[i];if (s[i][0] == '+'){string p = s[i].substr(1);int x = stoi(p);w[++cnt] = x;}}build(1, 1, cnt);int l = 1, r = 0;for (int i = 1; i <= n; i++){if (s[i][0] == '+'){r++;}else if (s[i][0] == '-'){l++;}else{int x = query(1, l, r).d;int y = query(1, l, r).minn;if (x == y)cout << "Y" << x << endl;elsecout << "N" << endl;}}
}
signed main()
{Ysanqian;int T;T = 1;// cin >> T;while (T--)solve();return 0;
}
A - Normal Magic Square
思路:就是求其1~n方的和除以行数即可,可以用等差数列求和
就不放代码了
J - Multidimensional Points
思路:很明显就是一个前缀和,即可
I - Hole Punch
思路:将其分解约数,除去1(最后一并输出1)和本身,如果除以这个因子为偶数则输出即可,
注意输出顺序
#include <bits/stdc++.h>
using namespace std;
#define pi acos(-1)
#define xx first
#define yy second
#define endl "\n"
#define lowbit(x) x & (-x)
#define int long long
#define ull unsigned long long
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define min(a, b) (((a) < (b)) ? (a) : (b))
#define Ysanqian ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
const int N = 1e6 + 10, M = 1010, inf = 0x3f3f3f3f, mod = 18446, P = 13331;
const double eps = 1e-8;
int n, ans;
vector<int> g;
priority_queue<int, vector<int>, greater<int>> q;
void fun(int x)
{for (int i = 1; i <= x / i; i++){if (x % i == 0){g.pb(i);if (x / i != i)g.pb(x / i);}}
}
void solve()
{cin >> n;fun(n);for (auto ed : g){if (ed != 1 && ed != n && n % ed == 0 && n / ed % 2 == 0){q.push(ed);ans++;}}cout << ans + 1 << endl;cout << 1 << ' ';while (q.size()){int u = q.top();cout << u << ' ';q.pop();}
}
signed main()
{Ysanqian;int T;T = 1;// cin >> T;while (T--)solve();return 0;
}
E - Black Box
题意:就是给你一个倒叙的01串,他是由原01串,左移位数,相加得来的,求原01串,注意倒序输出
思路:我们可以发现其与原串相加一定是0000长度不一定(以题目的n==4为例)
然后就是如何计算了,我们发现,我们只要让原串与给定串第一个不为0的地方相同,其余后面的取反,前面同为0,即可得到原串。
例如样例1101,第一位就不是0,那么我们这位取1,其余取反,答案就是1010
又如0010 , 原串就是0011,第三位才位1,我们前两位取0第三与其相同,后面取反即可
#include <bits/stdc++.h>
using namespace std;
#define pi acos(-1)
#define xx first
#define yy second
#define endl "\n"
#define lowbit(x) x & (-x)
#define int long long
#define ull unsigned long long
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define min(a, b) (((a) < (b)) ? (a) : (b))
#define Ysanqian ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
const int N = 1e6 + 10, M = 1010, inf = 0x3f3f3f3f, mod = 18446, P = 13331;
const double eps = 1e-8;
int n;
string s;
void solve()
{cin >> n;cin >> s;int i = 0;while (s[i] == '0'){i++;cout << '0';}if (i < s.size())cout << '1';i++;for (i; i < s.size(); i++){if (s[i] == '0')cout << '1';elsecout << '0';}
}
signed main()
{Ysanqian;int T;T = 1;// cin >> T;while (T--)solve();return 0;
}